on robust estimation and smoothing
play

On robust estimation and smoothing 2 with spatial and tonal kernels - PowerPoint PPT Presentation

M I Geometric Properties from Incomplete Data, Dagstuhl, March 2004 A 1 On robust estimation and smoothing 2 with spatial and tonal kernels 3 4 Pavel Mr azek Joachim Weickert and Andr es Bruhn 5 6 Mathematical Image Analysis


  1. M I Geometric Properties from Incomplete Data, Dagstuhl, March 2004 A 1 On robust estimation and smoothing 2 with spatial and tonal kernels 3 4 Pavel Mr´ azek Joachim Weickert and Andr´ es Bruhn 5 6 Mathematical Image Analysis Group, Saarland University 7 http://www.mia.uni-saarland.de 8 9 10

  2. M I Estimation from noisy data A General idea : � 1 constant signal u + noise n = measured noisy data f i Task: estimate the signal u 2 N N Gaussian noise → mean u = 1 � � ( u − f j ) 2 minimizes E ( u ) = f j � 3 N j =1 j =1 Noise with heavier tails → employ robust error norms � 4 5 6 7 8 9 10

  3. M I Estimation from noisy data A General idea : � 1 constant signal u + noise n = measured noisy data f i Task: estimate the signal u 2 N N Gaussian noise → mean u = 1 � � ( u − f j ) 2 minimizes E ( u ) = f j � 3 N j =1 j =1 Noise with heavier tails → employ robust error norms � 4 N � | u − f j | 2 � � M-estimators : minimize E ( u ) = Ψ 5 j =1 Examples: 6 Ψ( s 2 ) = s 2 → mean 7 −5 −4 −3 −2 −1 0 1 2 3 4 5 Ψ( s 2 ) = | s | → median 8 −5 −4 −3 −2 −1 0 1 2 3 4 5 1 Ψ( s 2 ) = 1 − e − s 2 /λ 2 → “mode” 9 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 l Ψ( s 2 ) = min( s 2 , λ 2 ) → “mode” 10 0 −5 −4 −3 −2 −1 0 1 2 3 4 5

  4. M I Local estimates A Data f i measured at position x i → find local estimate u i as � 1 N 2 � | u − f j | 2 � | x i − x j | 2 � � � u i = argmin Ψ w u j =1 3 s 2 < θ � 1 1 w ( s 2 ) = hard window 4 0 otherwise 0 −3 −2 −1 0 1 2 3 1 w ( s 2 ) = e − s 2 /θ 2 soft window (Chu et al. (1996)) 5 0 −3 −2 −1 0 1 2 3 6 7 8 9 10

  5. M I Local estimates A Data f i measured at position x i → find local estimate u i as � 1 N 2 � | u − f j | 2 � | x i − x j | 2 � � � u i = argmin Ψ w u j =1 3 s 2 < θ � 1 1 w ( s 2 ) = hard window 4 0 otherwise 0 −3 −2 −1 0 1 2 3 1 w ( s 2 ) = e − s 2 /θ 2 soft window (Chu et al. (1996)) 5 0 −3 −2 −1 0 1 2 3 6 Local M-smoothers : minimize 7 N � � | u i − f j | 2 � | x i − x j | 2 � � � E ( u ) = Ψ w 8 i =1 j ∈B ( i ) 9 10

  6. M I Local M-smoothers A N 1 � � | u i − f j | 2 � | x i − x j | 2 � � � Gradient descent on E ( u ) = Ψ : w � i =1 j ∈B ( i ) 2 i − τ ∂E u k +1 = u k 3 i ∂u i � = u k Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � 2 ( u k � i − τ i − f j ) w 4 j ∈B ( i ) � | x i − x j | 2 �� � Ψ ′ � | u k i − f j | 2 � u k � = 1 − 2 τ w 5 i j ∈B ( i ) � Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � 6 � + 2 τ w f j j ∈B ( i ) 7 8 9 10

  7. M I Local M-smoothers A N 1 � � | u i − f j | 2 � | x i − x j | 2 � � � Gradient descent on E ( u ) = Ψ : w � i =1 j ∈B ( i ) 2 i − τ ∂E u k +1 = u k 3 i ∂u i � = u k Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � 2 ( u k � i − τ i − f j ) w 4 j ∈B ( i ) � | x i − x j | 2 �� � Ψ ′ � | u k i − f j | 2 � u k � = 1 − 2 τ w 5 i j ∈B ( i ) � Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � 6 � + 2 τ w f j j ∈B ( i ) 7 1 Setting τ = j ∈B ( i ) Ψ ′ � i − f j | 2 � � | x i − x j | 2 � | u k 2 � w 8 9 10

  8. M I Local M-smoothers A N 1 � � | u i − f j | 2 � | x i − x j | 2 � � � Gradient descent on E ( u ) = Ψ : w � i =1 j ∈B ( i ) 2 i − τ ∂E u k +1 = u k 3 i ∂u i � = u k Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � 2 ( u k � i − τ i − f j ) w 4 j ∈B ( i ) � | x i − x j | 2 �� � Ψ ′ � | u k i − f j | 2 � u k � = 1 − 2 τ w 5 i j ∈B ( i ) � Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � 6 � + 2 τ w f j j ∈B ( i ) 7 1 Setting τ = j ∈B ( i ) Ψ ′ � i − f j | 2 � � | x i − x j | 2 � | u k 2 � w 8 j ∈B ( i ) Ψ ′ � | u k i − f j | 2 � | x i − x j | 2 � � � w f j 9 u k +1 we obtain = i j ∈B ( i ) Ψ ′ � | u k i − f j | 2 � � | x i − x j | 2 � � w 10

  9. M I The big picture A 1 GLOBAL M-estimators � | u − f j | 2 � � j Ψ 2 3 4 WINDOWED local M-smoothers | u i − f j | 2 � | x i − x j | 2 � � � � � j Ψ w 5 i 6 7 8 LOCAL 9 10

  10. M I Bayesian framework / regularization theory A Take the local M-estimator, decrease the spatial window size � 1 � 1 x i = x j | x i − x j | 2 � � → w = 0 otherwise 2 N � | u i − f i | 2 � � ⇒ minimizing E D ( u ) = Ψ has a trivial solution u i = f i . 3 i =1 4 5 6 7 8 9 10

  11. M I Bayesian framework / regularization theory A Take the local M-estimator, decrease the spatial window size � 1 � 1 x i = x j | x i − x j | 2 � � → w = 0 otherwise 2 N � | u i − f i | 2 � � ⇒ minimizing E D ( u ) = Ψ has a trivial solution u i = f i . 3 i =1 Bayesian / regularization framework : combine with prior knowledge, 4 assumptions e.g. about the smoothness of u 5 E ( u ) = α E D ( u ) + (1 − α ) E S ( u ) � 6 | u i − f i | 2 � |∇ u | 2 � � � = α Ψ D + (1 − α ) Ψ S i 7 Covered are e.g. 8 Mumford-Shah functional: Ψ D ( s 2 ) = s 2 , Ψ S ( s 2 ) = min( s 2 , λ 2 ) � graduated nonconvexity of Blake and Zisserman � nonlinear diffusion filters (Perona-Malik, TV flow, ...) 9 � 10

  12. M I The big picture A 1 GLOBAL M-estimators � | u − f j | 2 � � j Ψ 2 3 4 WINDOWED local M-smoothers | u i − f j | 2 � | x i − x j | 2 � � � � � j Ψ w 5 i 6 7 8 LOCAL Bayesian / regularization theory | u − f | 2 � |∇ u | 2 � � � � α Ψ D + (1 − α ) Ψ S 9 DATA TERM SMOOTHNESS TERM 10

  13. M I Smoothness term from larger window A Express smoothness using discrete samples: 1 ≈ � N � � |∇ u | 2 � �� j ∈N ( i ) | u i − u j | 2 � E S ( u ) = Ψ S i =1 Ψ S isotropic � 2 E S ( u ) ≈ � N | u i − u j | 2 � � � j ∈N ( i ) Ψ S anisotropic � i =1 3 4 5 6 7 8 9 10

  14. M I Smoothness term from larger window A Express smoothness using discrete samples: 1 ≈ � N � � |∇ u | 2 � �� j ∈N ( i ) | u i − u j | 2 � E S ( u ) = Ψ S i =1 Ψ S isotropic � 2 E S ( u ) ≈ � N | u i − u j | 2 � � � j ∈N ( i ) Ψ S anisotropic � i =1 3 Increase the window size ⇒ the smoothness term becomes N 4 � � | u i − u j | 2 � | x i − x j | 2 � � � E S ( u ) = Ψ w i =1 j ∈B ( i ) 5 which can be minimized by iterating 6 j ∈B ( i ) Ψ ′ � | u k i − u k j | 2 � | x i − x j | 2 � u k � � w j u k +1 7 = i j ∈B ( i ) Ψ ′ � | u k i − u k j | 2 � � | x i − x j | 2 � � w 8 9 10

  15. M I Smoothness term from larger window A Express smoothness using discrete samples: 1 ≈ � N � � |∇ u | 2 � �� j ∈N ( i ) | u i − u j | 2 � E S ( u ) = Ψ S i =1 Ψ S isotropic � 2 E S ( u ) ≈ � N | u i − u j | 2 � � � j ∈N ( i ) Ψ S anisotropic � i =1 3 Increase the window size ⇒ the smoothness term becomes N 4 � � | u i − u j | 2 � | x i − x j | 2 � � � E S ( u ) = Ψ w i =1 j ∈B ( i ) 5 which can be minimized by iterating 6 j ∈B ( i ) Ψ ′ � | u k i − u k j | 2 � � | x i − x j | 2 � u k � w j u k +1 = i 7 | u k i − u k j ∈B ( i ) Ψ ′ � j | 2 � � | x i − x j | 2 � � w 8 Bilateral filter of Tomasi and Manduchi 9 not exactly a gradient descent on E S ( u ) : � samples u i not independent and each needs a different descent step τ 10 alternative functional proposed by Elad: windowed smoothness + local data term �

  16. M I The big picture A 1 GLOBAL M-estimators � | u − f j | 2 � � j Ψ 2 3 4 WINDOWED local M-smoothers bilateral filter | u i − f j | 2 � | x i − x j | 2 � | u i − u j | 2 � | x i − x j | 2 � � � � � � � � � j Ψ w j Ψ S w 5 i i 6 7 | u i − u j | 2 � � � j ∈N ( i ) Ψ S j ∈N ( i ) | u i − u j | 2 � �� Ψ S 8 LOCAL Bayesian / regularization theory | u − f | 2 � |∇ u | 2 � � � � α Ψ D + (1 − α ) Ψ S 9 DATA TERM SMOOTHNESS TERM 10

  17. M I The big picture A 1 GLOBAL M-estimators � | u − f j | 2 � � j Ψ 2 3 4 WINDOWED local M-smoothers bilateral filter | u i − f j | 2 � | x i − x j | 2 � | u i − u j | 2 � | x i − x j | 2 � � � � � � � � � j Ψ w + j Ψ S w 5 i i DATA TERM SMOOTHNESS TERM 6 7 | u i − u j | 2 � � � j ∈N ( i ) Ψ S j ∈N ( i ) | u i − u j | 2 � �� Ψ S 8 LOCAL Bayesian / regularization theory | u − f | 2 � |∇ u | 2 � � � � α Ψ D + (1 − α ) Ψ S 9 DATA TERM SMOOTHNESS TERM 10

  18. M I The unifying functional A 1 � � | u i − f j | 2 � | x i − x j | 2 � � � E ( u ) = α Ψ D w D 2 i j | u i − u j | 2 � | x i − x j | 2 � � � + (1 − α ) Ψ S w S 3 covers many nonlinear filters for robust signal estimation and image smoothing 4 � new filter combinations possible � assumptions about signal and noise → Ψ D , w D , Ψ S , w S , α � 5 6 7 8 9 10

Recommend


More recommend