on line hev energy management using a
play

On-Line HEV Energy Management Using a Fuzzy Logic Yacine Gaoua 1,2,3 - PowerPoint PPT Presentation

On-Line HEV Energy Management Using a Fuzzy Logic Yacine Gaoua 1,2,3 , Stphane Caux 1 , Pierre Lopez 2,3 and Josep Domingo Salvany 4 1. Institut National Polytechnique de Toulouse, INPT 2. Laboratoire PLAsma et Conversion d'Energie, LAPLACE 3.


  1. On-Line HEV Energy Management Using a Fuzzy Logic Yacine Gaoua 1,2,3 , StΓ©phane Caux 1 , Pierre Lopez 2,3 and Josep Domingo Salvany 4 1. Institut National Polytechnique de Toulouse, INPT 2. Laboratoire PLAsma et Conversion d'Energie, LAPLACE 3. Laboratoire d'Analyse et d'Architecture des Systemes, LAAS-CNRS 4. Nexter Electronics, NE ygaoua@laplace.univ-tlse.fr caux@laplace.univ-tlse.fr, lopez@laas.fr, j.domingo@nexter-group.fr

  2. Outline of the presentation I. Introduction to HEV energy chain II. Sources characteristics III. Modeling IV. Solving method V. Off-line optimization VI. Results and performance VII. Conclusion

  3. I. HEV energy chain Hybrid Electrical Vehicle HEV energy chain Battery Super-capacitor Fuel cell

  4. II. Sources characteristics Parameter Meaning 𝑱 π’…π’Š Demand of the powertrain (A) 𝒏𝒋𝒐 , 𝑱 𝒃 π’π’ƒπ’š 𝑱 𝒃 Min/Max current exiting the PCube converter (A) 𝒏𝒋𝒐 , 𝑱 𝒕𝒅 π’π’ƒπ’š 𝑱 𝒕𝒅 Min/Max current provided by the super-capacitor (A) 𝒏𝒋𝒐 , 𝑽 𝒕𝒅 π’π’ƒπ’š , 𝑽 𝒕𝒅 (0) 𝑽 𝒕𝒅 Min/Max/Initial voltage of the super-capacitor (V) 𝒏𝒋𝒐 , 𝑻𝑷𝑫 𝒄𝒃𝒖 π’π’ƒπ’š , 𝑻𝑷𝑫 𝒄𝒃𝒖 (0) 𝑻𝑷𝑫 𝒄𝒃𝒖 Min/Max/Initial energy level in the battery pack (%) 𝑫𝒃𝒒 𝒄𝒃𝒖 Battery capacity (Ah) πœ π’– Time stepsize (s) 𝑺 𝒕𝒅 Super-capacitor internal resistance (Ξ©) 𝑫 𝒕𝒅 Super-capacitor capacity (F) 𝑭𝑴𝒑𝒕𝒕 𝒄𝒃𝒖 Battery energy losses (kW) E 𝑴𝒑𝒕𝒕 π’…π’˜π’• Energy losses of the PCube converter (kW) Input parameters. Battery efficiency. Convertor efficiency.

  5. III. Modeling Mathematical modeling Goal: Minimize battery discharge Under constrains of (system functioning, sources design, safety limitation), 𝐽 𝑐𝑏𝑒 + 𝐽 𝑏 = 𝐽 π‘‘β„Ž 𝐽 π‘‘β„Ž > 0 𝐽 π‘‘β„Ž ≀ 𝐽 𝑐𝑏𝑒 + 𝐽 𝑏 ≀ 0 𝐽 π‘‘β„Ž ≀ 0 π‘π‘—π‘œ ≀ 𝐽 𝑏 ≀ 𝐽 𝑏 𝑁𝑏𝑦 𝐽 𝑏 π‘π‘—π‘œ ≀ 𝐽 𝑑𝑑 ≀ 𝐽 𝑑𝑑 𝑁𝑏𝑦 𝐽 𝑑𝑑 π‘π‘—π‘œ ≀ 𝑉 𝑑𝑑 ≀ 𝑉 𝑑𝑑 𝑁𝑏𝑦 𝑉 𝑑𝑑 π‘π‘—π‘œ ≀ 𝑇𝑃𝐷 𝑐𝑏𝑒 ≀ 𝑇𝑃𝐷 𝑐𝑏𝑒 𝑁𝑏𝑦 𝑇𝑃𝐷 𝑐𝑏𝑒 𝑆 = 𝑄 + πΉπ‘šπ‘π‘‘π‘‘ 𝑐𝑏𝑒 (𝑄 ) ( nlp ) 𝑄 𝑐𝑏𝑒 𝑐𝑏𝑒 𝑐𝑏𝑒 2 = 𝑄 + πΉπ‘šπ‘π‘‘π‘‘ 𝑑𝑀𝑑 𝑄 + 𝑆 𝑑𝑑 𝐽 𝑑𝑑 𝑄 𝑑𝑑 𝑏 𝑏 Decision variables: 100.𝐹 𝑐𝑏𝑒 𝑇𝑃𝐷 𝑐𝑏𝑒 = 𝑇𝑃𝐷 𝑐𝑏𝑒 0 + βˆ†π‘’ π·π‘π‘ž 𝑐𝑏𝑒 βˆ†π‘’ 𝑉 𝑑𝑑 = 𝑉 𝑑𝑑 0 + 𝐽 𝑑𝑑 + 𝑆 𝑑𝑑 + 𝐷 𝑑𝑑 𝑺 : Real battery current β€’ 𝑱 𝒄𝒃𝒖 𝑱 𝒄𝒃𝒖 : battery current β€’ 𝑉 𝑐𝑏𝑒 = 𝑔 𝑇𝑃𝐷 𝑐𝑏𝑒 0 𝑻𝑷𝑫 𝒄𝒃𝒖 : Battery State of charge β€’ 𝑆 𝐹 𝑐𝑏𝑒 = 𝑕 𝐽 𝑐𝑏𝑒 𝑽 𝒄𝒃𝒖 : Battery voltage β€’ β€’ 𝑱 𝒕𝒅 : Super-capacitor current β€’ 𝑽 𝒕𝒅 : Super-capacitor voltage 𝒉 : Computation of electrical quantity 𝑱 𝒃 : Convertor current β€’ π’ˆ : Computation of battery voltage

  6. IV. Solving method using fuzzy logic Super-capacitor voltage. Battery current. Powertrain demand. Parameters setting: Genetic algorithm (off-line - GPS) Control and correction algorithm π’‹π’ˆ 𝑱 π’…π’Š = . 𝒃𝒐𝒆 𝑽 𝒕𝒅 = . π’–π’Šπ’‡π’ 𝑱 𝒄𝒃𝒖 = . 𝒑𝒔 Rules generation. Decision surface (centroid method). Rules engine.

  7. V. Off-line optimization Global optimization 𝑡𝒋𝒐 𝟐𝟏𝟏 βˆ’ 𝑻𝑷𝑫 𝒄𝒃𝒖 𝑼 = π‘΅π’ƒπ’š 𝑻𝑷𝑫 𝒄𝒃𝒖 𝑼 𝐽 𝑐𝑏𝑒 (𝑒) + 𝐽 𝑏 (𝑒) = 𝐽 π‘‘β„Ž (𝑒) 𝐽 π‘‘β„Ž (𝑒) > 0 𝐽 π‘‘β„Ž ≀ 𝐽 𝑐𝑏𝑒 + 𝐽 𝑏 ≀ 0 𝐽 π‘‘β„Ž (𝑒) ≀ 0 π‘π‘—π‘œ ≀ 𝐽 𝑏 (𝑒) ≀ 𝐽 𝑏 𝑁𝑏𝑦 𝐽 𝑏 π‘π‘—π‘œ ≀ 𝐽 𝑑𝑑 (𝑒) ≀ 𝐽 𝑑𝑑 𝑁𝑏𝑦 𝐽 𝑑𝑑 π‘π‘—π‘œ ≀ 𝑉 𝑑𝑑 𝑒 ≀ 𝑉 𝑑𝑑 𝑁𝑏𝑦 𝑉 𝑑𝑑 π‘π‘—π‘œ ≀ 𝑇𝑃𝐷 𝑐𝑏𝑒 (𝑒) ≀ 𝑇𝑃𝐷 𝑐𝑏𝑒 𝑁𝑏𝑦 𝑇𝑃𝐷 𝑐𝑏𝑒 ( nlp) 𝑆 𝑒 = 𝑄 𝑐𝑏𝑒 𝑒 + πΉπ‘šπ‘π‘‘π‘‘ 𝑐𝑏𝑒 𝑄 𝑐𝑏𝑒 𝑒 𝑄 𝑐𝑏𝑒 Mission profile NE (176s). 𝐽 𝑑𝑑 (𝑒) 2 (𝑒) = 𝑄 (𝑒) + πΉπ‘šπ‘π‘‘π‘‘ 𝑑𝑀𝑑 𝑄 (𝑒) + 𝑆 𝑑𝑑 𝑄 𝑑𝑑 𝑏 𝑏 100.𝐹 𝑐𝑏𝑒 𝑒 𝑇𝑃𝐷 𝑐𝑏𝑒 𝑒 = 𝑇𝑃𝐷 𝑐𝑏𝑒 𝑒 βˆ’ 1 + βˆ†π‘’ π·π‘π‘ž 𝑐𝑏𝑒 βˆ†π‘’ 𝑉 𝑑𝑑 (𝑒) = 𝑉 𝑑𝑑 𝑒 βˆ’ 1 + 𝐽 𝑑𝑑 (𝑒) + 𝑆 𝑑𝑑 + 𝐷 𝑑𝑑 𝑉 𝑐𝑏𝑒 = 𝑔 𝑇𝑃𝐷 𝑐𝑏𝑒 𝑒 βˆ’ 1 𝑆 (𝑒) 𝐹 𝑐𝑏𝑒 = 𝑕 𝐽 𝑐𝑏𝑒 Optimization using Operations Research methods: AMPL+ IpOpt algorithm (Interior Points)

  8. VI. Results and performance HEV sources/ Number of cycles / HEV sources/ Number of cycles / Battery discharge Battery discharge Method Method HEV battery alone 30 Cycles – 88.3143% HEV battery alone 1 Cycle – 52.3566% HEV with PCube - FL HEV with PCube - FL 34 Cycles – 88.8872% 2 Cycles – 85.7596% HEV with PCube - GAFL 35 Cycles – 87.6296% HEV with PCube - GAFL 2 Cycles – 71.9029% HEV with PCube βˆ’ IpOpt 39 Cycles – 88.7396% HEV with PCube βˆ’ IpOpt 3 Cycles – 89.896% Battery discharge (1 cycle) Battery discharge (1 cycle) HEV with PCube HEV with PCube GAFL GAFL 2.546% 36.1712% IpOpt IpOpt 2.29315% 30.49% NE Mission profile 176s. Mission profile 3h 50min.

  9. VII. Conclusions and perspectives Conclusions: β€’ Genetic algorithm improve the solution by setting FL parameters off-line, β€’ Good quality of the results (in regard to the global optimization), β€’ Development of decision support tool in C + + (implementation in a dsp target). Perspectives: β€’ Validation of results on a real prototype.

  10. Thank you for your attention ygaoua@laplace.univ-tlse.fr caux@laplace.univ-tlse.fr, lopez@laas.fr, j.domingo@nexter-group.fr

Recommend


More recommend