Nucleosynthesis 12 C(π½, πΏ) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017
Topics S-Factor Simulation Outlook 2
S-Factor 3
Stages of stellar nucleosynthesis β’ Hydrogen Burning (PPI-III & CNO Chain) β’ Fuel: proton β’ π β 2 β 10 7 K β’ Main product: 4 He β’ Helium Burning β’ Fuel: 4 He β’ π β 2 β 10 8 K β’ Main product: 12 C , 16 O 4
Helium Burning in red giants β’ Main reactions: 3π½ β 12 C + πΏ 12 C π½, πΏ 16 O β’ 12 C/ 16 O abundance ratio β’ Further burning states β’ Nucleosynthesis in massive stars Cp. Hammache: 12 C π½, πΏ 16 O in massive star stellar evolution 5
Gamow-Peak β’ Fusion reaction below Coulomb barrier ππ βΌ 15 keV @ π = 2 β 10 8 K β’ Transmission probability governed by tunnel efffect β’ Gamow-Peak πΉ 0 β’ Convolution of probability distribution ο Maxwell-Boltxmann ο QM Coulomb barrier transmission β’ Depends on reaction and temperature Cp. Marialuisa Aliotta: Exotic beam studies in Nuclear Astrophyiscs 6
S-Factor β’ Nonresonant Cross section π πΉ = 1 πΉ π β2ππ 1 π 2 π½π π(πΉ) π€ β’ π β Factor = probability to tunnel through Coulomb barrier π€ = velocity between the two nuclei π½ = fine structure constant π 1 , π 2 = Proton number of the nuclei β’ π πΉ = Deviation Factor from trivial model 7
Gamow-Peak for 12 C π½, πΏ 16 O π πΉ = πΉ β π π/ πΉ π(πΉ) β’ Gamow-Peak ( π β 2 β 10 8 K ) 2 1 3 πΉ 0 = 2 π β π β π β 300 keV β’ π = Bolzmann constant β’ π = ππ½π 1 π 2 2ππ 2 π 1 π 2 π 1 +π 2 reduced mass β’ π = β’ Gamow Width Ξ = 4 πΉ 0 ππ/3 8
Cross section β’ π(πΉ 0 )~10 β17 barn β’ Precise low-energy measurements required ο MAGIX@MESA β’ Direct measurements never done @ πΉcm < 0.9 MeV Cp. Simulation of Ugalde 2013 9
Measurement of S-Factor Approximate π(300 keV) β’ Buchmann (2005) β’ 102 β 198 keVβ b β’ Caughlan and Fowler (1988) β’ 120 β 220 keV β b β’ Hammer (2005) β’ 162 Β± 39 keVβ b 10
Measurement at MAGIX@MESA β’ Time reverted reaction 16 O(πΏ, π½) 12 C ο Cross section gain a factor of Γ 100 β’ Inelastic π β scattering on oxygen gas β’ Measurement of coincidence ( π β , π½ ) ο suppress background ο π½ -Particle with low energy β’ High Luminosity 11
Inverse Kinematik β’ Time reversed reaction: π(πΉ 0 )~10 β15 barn β’ High Energy resolution required ο MAGIX πΉ 0 Cp. Simulation of Ugalde 2013 12
Simulation 13
Introduction β’ MXWare (see talk Caiazza) β’ Monte Carlo Integration β’ Fix Beam Energy β’ Target at Rest β’ Simulation acceptance 4π 14
Kinematik β’ Momentum transfer π 2 = β4πΉπΉ β² sin 2 π 2 β’ Photon Energy π 2 βπ 2 βπ 2 π = 2π with π + p π π 2 π 2 = p πΏ β’ invariant mass of photon and oxygen π = Oxygen mass β’ β’ Inelastic scattering cross section πΞ©ππΉβ² = 4π½ 2 πΉ β²2 π 2 π 2 π 2 , π β cos 2 π 1 π 2 , π β sin 2 π π + 2π π 4 2 2 15
Virtual Photon flux Relation beween structural functions and the transversal / longitudinal part of the virtual photon cross section π π , π π β1 π 2 π 2 βπ 2 π π with π = π 1 = 4π 2 π½ π π π 2 = 4π 2 π½ 1 β (π π + π π ) π 2 2π So we get π 3 π πΞ©ππΉ β² = Ξ π π + ππ π with β1 πΉ β² π 2 βπ 2 π½π 1 π tan 2 Ξ = 2π 2 π 2 β πΉ β π = 1 β 2 π 2 1βπ 2 For π 2 β 0 : π π vanish and π π β π tot πΏ β + 16 O β π π 5 π πΞ© π ππΉ β² πΞ© β = Ξ ππ π€ πΞ© β Cp. Halzen & Martin: Quarks and Leptons 16
Time reversal Factor β’ Direct cross section -> Measurement β’ Compare with inverse cross section -> extract the S-Factor β’ Calculate time reversal factor 17
Time reversal Factor Phase space examination under T-symmetry invariance 2 | π| π π πβπ (2π½ 3 +1)(2π½ 4 +1) π πβπ = (2π½ 1 +1)(2π½ 2 +1) β 2 | π| π Spinstatistic : I=0 for even β even nuclides ( 4 He, 12 C, 16 O ) in ground state for photon. 2π½ πΏ + 1 = 2 So we get 2 2 π 2 β πHe + πC π 2 β πHe β πC π( 16 O πΏ, π½ 12 C) = 1 β π( 12 C(π½, πΏ) 16 O) π 2 β πO π 2 β πO 2 2 2 Cp. Mayer-Kuckuk Kernphysik: Chapter 7.3 18
Result of first simulations Nonresonant cross section π( 16 π(πΏ, π½) 12 π·) β’ Simulation correlate to the results of Ugalde β’ 4π β Simulation β’ βΌ 0.1 mHz Reaction Rate by πΉ 0 with π βΌ 10 34 ππ β2 π‘ β1 ο Worst case Luminosity (see later talks) β’ Now simulation with π β , π½ β Acceptance needed. 19
Outlook 20
Simulation β’ Finish simulation ο electron acceptance ο π½ -Particle acceptance β’ Preliminary results ο Need measurement on angles smaller than Spectrometer coverage ο 0 degree scattering -> New Theoretic calculations 21
π½ -Detection β’ Low kinetic energy ο βΌ 20 MeV β’ Needs specialized detector ο Silicon-Strip-Detector β’ Choose and Test Silicon-Strip-Detectors in the Lab 22
THANK YOU FOR YOUR ATTENTION! http://magix.kph.uni-mainz.de
BACKUP
Production factor Waver and Woosley Phys Rep 227 (1993) 65 25
Two-Body Reaction In the center of mass frame 16 π(πΏ β , π½) 12 π· π 2 +π 3 2 βπ 4 2 π 2 +π 4 2 βπ 3 2 πΉ 3 = πΉ 4 = 2π 2π π 2 β π 3 +π 4 2 π 2 β π 3 βπ 4 2 πΉ 2 β π 2 = π = 2π 26
Electron scattering Cross section inelastic scattering (cp. Chapter 7.2) β π 2 π ππ 1 π 2 , π tan 2 π 2 π 2 , π + 2π πΞ©ππΉβ² = π πΞ© 2 Mott With structural functions π 1 , π 2 And Mott crossection (in this case) β = 4π½ 2 πΉ β²2 ππ cos 2 π π 4 πΞ© Mott 2 We get (cp. Halzen & Martin Chapter 8) πΞ©ππΉβ² = 4π½ 2 πΉ β²2 π 2 π 2 π 2 , π β cos 2 π 1 π 2 , π β sin 2 π π + 2π π 4 2 2 27
Basic of Simulation Connection between count rate and cross section π΅ Ξ© dπ π = πΞ© πΞ© β πππ’ + πBG Ξ© With π : Luminosity π : Number of counts π΅ Ξ© βΆ Acceptance (1 full accepted, 0 not detected) 28
Monte Carlo Integration Definition of mean value in volume π : π = 1 π π¦ π π π¦ π π Estimator for mean value: π π β 1 π π(π¦ π ) π=1 Monte-Carlo Integration: π π π¦ π π π¦ = π β π Β± π π 2 β π 2 π π π¦ π π π π=1 Strategies for numerical improvements: β’ Improve convergence 1/ π π 2 β π 2 β’ Improve variance 29
Cross section simulation ππ πΞ© π ππΉ π πΞ© β πΞ© π ππΉ π πΞ© β π Transform Ξ©, πΉ with β π, 1/π 2 , π det πΎ = π 4 2ππΉπΉ β² With Monte-Carlo Integration: πΞ© π ππΉ π πΞ© β πΞ© π ππΉ π πΞ© β = V ππ ππ π, 1/π 2 , π, Ξ© β N det πΎ β πΞ© π ππΉ π πΞ© β π ππ Define π π = π β det πΎ β πΞ© π ππΉ π πΞ© β So we get 2ππΉπΉ β² β π€ β Ξπ β Ξπ β Ξ cos π β β Ξπ β β Ξ β ππ π€ π π π = π 4 πΞ© β 30
Recommend
More recommend