nucleosynthesis 12 c 16 o
play

Nucleosynthesis 12 C(, ) 16 O at MAGIX/MESA Stefan Lunkenheimer - PowerPoint PPT Presentation

Nucleosynthesis 12 C(, ) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017 Topics S-Factor Simulation Outlook 2 S-Factor 3 Stages of stellar nucleosynthesis Hydrogen Burning (PPI-III & CNO Chain)


  1. Nucleosynthesis 12 C(𝛽, 𝛿) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017

  2. Topics S-Factor Simulation Outlook 2

  3. S-Factor 3

  4. Stages of stellar nucleosynthesis β€’ Hydrogen Burning (PPI-III & CNO Chain) β€’ Fuel: proton β€’ π‘ˆ β‰ˆ 2 β‹… 10 7 K β€’ Main product: 4 He β€’ Helium Burning β€’ Fuel: 4 He β€’ π‘ˆ β‰ˆ 2 β‹… 10 8 K β€’ Main product: 12 C , 16 O 4

  5. Helium Burning in red giants β€’ Main reactions: 3𝛽 β†’ 12 C + 𝛿 12 C 𝛽, 𝛿 16 O β€’ 12 C/ 16 O abundance ratio β€’ Further burning states β€’ Nucleosynthesis in massive stars Cp. Hammache: 12 C 𝛽, 𝛿 16 O in massive star stellar evolution 5

  6. Gamow-Peak β€’ Fusion reaction below Coulomb barrier π‘™π‘ˆ ∼ 15 keV @ π‘ˆ = 2 β‹… 10 8 K β€’ Transmission probability governed by tunnel efffect β€’ Gamow-Peak 𝐹 0 β€’ Convolution of probability distribution οƒ˜ Maxwell-Boltxmann οƒ˜ QM Coulomb barrier transmission β€’ Depends on reaction and temperature Cp. Marialuisa Aliotta: Exotic beam studies in Nuclear Astrophyiscs 6

  7. S-Factor β€’ Nonresonant Cross section 𝜏 𝐹 = 1 𝐹 𝑓 βˆ’2πœŒπ‘Ž 1 π‘Ž 2 𝛽𝑑 𝑇(𝐹) 𝑀 β€’ 𝑓 βˆ’ Factor = probability to tunnel through Coulomb barrier 𝑀 = velocity between the two nuclei 𝛽 = fine structure constant π‘Ž 1 , π‘Ž 2 = Proton number of the nuclei β€’ 𝑇 𝐹 = Deviation Factor from trivial model 7

  8. Gamow-Peak for 12 C 𝛽, 𝛿 16 O 𝑇 𝐹 = 𝐹 β‹… 𝑓 𝑐/ 𝐹 𝜏(𝐹) β€’ Gamow-Peak ( π‘ˆ β‰ˆ 2 β‹… 10 8 K ) 2 1 3 𝐹 0 = 2 𝑐 β‹… 𝑙 β‹… π‘ˆ β‰ˆ 300 keV β€’ 𝑙 = Bolzmann constant β€’ 𝑐 = πœŒπ›½π‘Ž 1 π‘Ž 2 2πœˆπ‘‘ 2 𝑁 1 𝑁 2 𝑁 1 +𝑁 2 reduced mass β€’ 𝜈 = β€’ Gamow Width Ξ” = 4 𝐹 0 π‘™π‘ˆ/3 8

  9. Cross section β€’ 𝜏(𝐹 0 )~10 βˆ’17 barn β€’ Precise low-energy measurements required οƒ˜ MAGIX@MESA β€’ Direct measurements never done @ 𝐹cm < 0.9 MeV Cp. Simulation of Ugalde 2013 9

  10. Measurement of S-Factor Approximate 𝑇(300 keV) β€’ Buchmann (2005) β€’ 102 βˆ’ 198 keVβ‹…b β€’ Caughlan and Fowler (1988) β€’ 120 βˆ’ 220 keV β‹… b β€’ Hammer (2005) β€’ 162 Β± 39 keVβ‹…b 10

  11. Measurement at MAGIX@MESA β€’ Time reverted reaction 16 O(𝛿, 𝛽) 12 C οƒ˜ Cross section gain a factor of Γ— 100 β€’ Inelastic 𝑓 βˆ’ scattering on oxygen gas β€’ Measurement of coincidence ( 𝑓 βˆ’ , 𝛽 ) οƒ˜ suppress background οƒ˜ 𝛽 -Particle with low energy β€’ High Luminosity 11

  12. Inverse Kinematik β€’ Time reversed reaction: 𝜏(𝐹 0 )~10 βˆ’15 barn β€’ High Energy resolution required οƒ˜ MAGIX 𝐹 0 Cp. Simulation of Ugalde 2013 12

  13. Simulation 13

  14. Introduction β€’ MXWare (see talk Caiazza) β€’ Monte Carlo Integration β€’ Fix Beam Energy β€’ Target at Rest β€’ Simulation acceptance 4𝜌 14

  15. Kinematik β€’ Momentum transfer π‘Ÿ 2 = βˆ’4𝐹𝐹 β€² sin 2 πœ„ 2 β€’ Photon Energy 𝑋 2 βˆ’π‘ 2 βˆ’π‘Ÿ 2 πœ‰ = 2𝑁 with 𝜈 + p 𝑃 𝜈 2 𝑋 2 = p 𝛿 β€’ invariant mass of photon and oxygen 𝑁 = Oxygen mass β€’ β€’ Inelastic scattering cross section 𝑒Ω𝑒𝐹′ = 4𝛽 2 𝐹 β€²2 𝑒 2 𝜏 2 π‘Ÿ 2 , πœ‰ β‹… cos 2 πœ„ 1 π‘Ÿ 2 , πœ‰ β‹… sin 2 πœ„ 𝑋 + 2𝑋 π‘Ÿ 4 2 2 15

  16. Virtual Photon flux Relation beween structural functions and the transversal / longitudinal part of the virtual photon cross section 𝜏 π‘ˆ , 𝜏 𝑀 βˆ’1 πœ‰ 2 𝑋 2 βˆ’π‘ 2 πœ† πœ† with πœ† = 𝑋 1 = 4𝜌 2 𝛽 𝜏 π‘ˆ 𝑋 2 = 4𝜌 2 𝛽 1 βˆ’ (𝜏 𝑀 + 𝜏 π‘ˆ ) π‘Ÿ 2 2𝑁 So we get 𝑒 3 𝜏 𝑒Ω𝑒𝐹 β€² = Ξ“ 𝜏 π‘ˆ + 𝜁𝜏 𝑀 with βˆ’1 𝐹 β€² πœ‰ 2 βˆ’π‘Ÿ 2 π›½πœ† 1 πœ„ tan 2 Ξ“ = 2𝜌 2 π‘Ÿ 2 β‹… 𝐹 β‹… 𝜁 = 1 βˆ’ 2 π‘Ÿ 2 1βˆ’πœ 2 For π‘Ÿ 2 β†’ 0 : 𝜏 𝑀 vanish and 𝜏 π‘ˆ β†’ 𝜏 tot 𝛿 βˆ— + 16 O β†’ π‘Œ 𝑒 5 𝜏 𝑒Ω 𝑓 𝑒𝐹 β€² 𝑒Ω βˆ— = Ξ“ π‘’πœ 𝑀 𝑒Ω βˆ— Cp. Halzen & Martin: Quarks and Leptons 16

  17. Time reversal Factor β€’ Direct cross section -> Measurement β€’ Compare with inverse cross section -> extract the S-Factor β€’ Calculate time reversal factor 17

  18. Time reversal Factor Phase space examination under T-symmetry invariance 2 | π‘ž| 𝑔 𝜏 𝑗→𝑔 (2𝐽 3 +1)(2𝐽 4 +1) 𝜏 𝑔→𝑗 = (2𝐽 1 +1)(2𝐽 2 +1) β‹… 2 | π‘ž| 𝑗 Spinstatistic : I=0 for even – even nuclides ( 4 He, 12 C, 16 O ) in ground state for photon. 2𝐽 𝛿 + 1 = 2 So we get 2 2 𝑋 2 βˆ’ 𝑛He + 𝑛C 𝑋 2 βˆ’ 𝑛He βˆ’ 𝑛C 𝜏( 16 O 𝛿, 𝛽 12 C) = 1 β‹… 𝜏( 12 C(𝛽, 𝛿) 16 O) 𝑋 2 βˆ’ 𝑛O 𝑋 2 βˆ’ 𝑛O 2 2 2 Cp. Mayer-Kuckuk Kernphysik: Chapter 7.3 18

  19. Result of first simulations Nonresonant cross section 𝜏( 16 𝑃(𝛿, 𝛽) 12 𝐷) β€’ Simulation correlate to the results of Ugalde β€’ 4𝜌 βˆ’ Simulation β€’ ∼ 0.1 mHz Reaction Rate by 𝐹 0 with 𝑀 ∼ 10 34 𝑑𝑛 βˆ’2 𝑑 βˆ’1 οƒ˜ Worst case Luminosity (see later talks) β€’ Now simulation with 𝑓 βˆ’ , 𝛽 βˆ’ Acceptance needed. 19

  20. Outlook 20

  21. Simulation β€’ Finish simulation οƒ˜ electron acceptance οƒ˜ 𝛽 -Particle acceptance β€’ Preliminary results οƒ˜ Need measurement on angles smaller than Spectrometer coverage οƒ˜ 0 degree scattering -> New Theoretic calculations 21

  22. 𝛽 -Detection β€’ Low kinetic energy οƒ˜ ∼ 20 MeV β€’ Needs specialized detector οƒ˜ Silicon-Strip-Detector β€’ Choose and Test Silicon-Strip-Detectors in the Lab 22

  23. THANK YOU FOR YOUR ATTENTION! http://magix.kph.uni-mainz.de

  24. BACKUP

  25. Production factor Waver and Woosley Phys Rep 227 (1993) 65 25

  26. Two-Body Reaction In the center of mass frame 16 𝑃(𝛿 βˆ— , 𝛽) 12 𝐷 𝑋 2 +𝑛 3 2 βˆ’π‘› 4 2 𝑋 2 +𝑛 4 2 βˆ’π‘› 3 2 𝐹 3 = 𝐹 4 = 2𝑋 2𝑋 𝑋 2 βˆ’ 𝑛 3 +𝑛 4 2 𝑋 2 βˆ’ 𝑛 3 βˆ’π‘› 4 2 𝐹 2 βˆ’ 𝑛 2 = π‘ž = 2𝑋 26

  27. Electron scattering Cross section inelastic scattering (cp. Chapter 7.2) βˆ— 𝑒 2 𝜏 π‘’πœ 1 π‘Ÿ 2 , πœ‰ tan 2 πœ„ 2 π‘Ÿ 2 , πœ‰ + 2𝑋 𝑒Ω𝑒𝐹′ = 𝑋 𝑒Ω 2 Mott With structural functions 𝑋 1 , 𝑋 2 And Mott crossection (in this case) βˆ— = 4𝛽 2 𝐹 β€²2 π‘’πœ cos 2 πœ„ π‘Ÿ 4 𝑒Ω Mott 2 We get (cp. Halzen & Martin Chapter 8) 𝑒Ω𝑒𝐹′ = 4𝛽 2 𝐹 β€²2 𝑒 2 𝜏 2 π‘Ÿ 2 , πœ‰ β‹… cos 2 πœ„ 1 π‘Ÿ 2 , πœ‰ β‹… sin 2 πœ„ 𝑋 + 2𝑋 π‘Ÿ 4 2 2 27

  28. Basic of Simulation Connection between count rate and cross section 𝐡 Ξ© d𝜏 𝑂 = 𝑒Ω 𝑒Ω β‹… 𝑀𝑒𝑒 + 𝑂BG Ξ© With 𝑀 : Luminosity 𝑂 : Number of counts 𝐡 Ξ© ∢ Acceptance (1 full accepted, 0 not detected) 28

  29. Monte Carlo Integration Definition of mean value in volume π‘Š : 𝑔 = 1 𝑔 𝑦 𝑒 π‘œ 𝑦 π‘Š π‘Š Estimator for mean value: 𝑂 𝑔 β‰ˆ 1 𝑂 𝑔(𝑦 𝑗 ) 𝑗=1 Monte-Carlo Integration: 𝑂 𝑔 𝑦 𝑒 π‘œ 𝑦 = 𝑔 β‰ˆ π‘Š Β± π‘Š 𝑔 2 βˆ’ 𝑔 2 𝑂 𝑔 𝑦 𝑗 𝑂 π‘Š 𝑗=1 Strategies for numerical improvements: β€’ Improve convergence 1/ 𝑂 𝑔 2 βˆ’ 𝑔 2 β€’ Improve variance 29

  30. Cross section simulation π‘’πœ 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑋 Transform Ξ©, 𝐹 with β†’ 𝑋, 1/π‘Ÿ 2 , 𝜚 det 𝐾 = π‘Ÿ 4 2𝑁𝐹𝐹 β€² With Monte-Carlo Integration: 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— = V π‘’πœ π‘’πœ 𝑋, 1/π‘Ÿ 2 , 𝜚, Ξ© βˆ— N det 𝐾 β‹… 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— 𝑗 π‘’πœ Define πœ• 𝑗 = π‘Š β‹… det 𝐾 β‹… 𝑒Ω 𝑓 𝑒𝐹 𝑓 𝑒Ω βˆ— So we get 2𝑁𝐹𝐹 β€² β‹… 𝑀 β‹… Ξ”πœš β‹… Δ𝑋 β‹… Ξ” cos πœ„ βˆ— β‹… Ξ”πœš βˆ— β‹… Ξ“ β‹… π‘’πœ 𝑀 𝑋 πœ• 𝑗 = π‘Ÿ 4 𝑒Ω βˆ— 30

Recommend


More recommend