status of big bang nucleosynthesis
play

Status of Big Bang Nucleosynthesis Gianpiero Mangano INFN, Naples - PowerPoint PPT Presentation

Status of Big Bang Nucleosynthesis Gianpiero Mangano INFN, Naples ITAL Y WIN 2017, Irvine June 20th 2017 T o Gary Steigman SUMMARY Overview of BBN theory PARAMETERS ( b h 2 , reaction rates, N eff , v asymmetries,) DATA COMPARISON: -


  1. Status of Big Bang Nucleosynthesis Gianpiero Mangano INFN, Naples ITAL Y WIN 2017, Irvine June 20th 2017

  2. T o Gary Steigman

  3. SUMMARY Overview of BBN theory PARAMETERS ( Ω b h 2 , reaction rates, N eff , v asymmetries,…) DATA COMPARISON: - standard scenario - extra relativistic species from BBN and CMB - sterile states - v chemical potentials

  4. Theory reasonably under control (per mille level for 4 He (neutron lifetime), 1-2 % for 2 H); Increased precision in nuclear reaction cross sections at low energy (underground lab’s); Ω b h 2 measured by WMAP/Planck with high precision; Still some systematics on 4 He, 2 H fixes Ω b h 2 value in good agreement with CMB data, 7 Li not understood, 6 Li too small, yet some claim.

  5. THEORY weak rate freeze out (1 MeV); 2 H forms at T ∼ 0.08 MeV; nuclear chain; Public numerical codes:Kawano, PArthENoPE, AlterBBN, private numerical codes: many...

  6. THEORY Weak rates: radiative corrections O( α ) finite nucleon mass O(T/M N ) Nico & Snow 2006 plasma effects O( α T/m e ) neutrino decoupling O(G F2 T 3 m Pl ) N eff =3.046 G.M. et al 2005 Main uncertainty: neutron lifetime τ n = 885.6 ± 0.8 sec (old PDG mean) g A τ n =878.5 ± 0.8 sec (Serebrov et al 2005) Presently: τ n =880.2 ± 1.0 sec (PDG) 4 He mass fraction Y P linearly increases with τ n : 0.246 - 0.249 g V

  7. Nuclear rates: THEORY THEORY main input from experiments low energy range (10 2 KeV) major improvement: underground measurements (e.g. LUNA at LNGS) Rupak n(p, γ ) 2 H LUNA LUNA 2 H(p, γ ) 3 He Weitzmann Inst. 3 He( α , γ ) 7 Be ERNA: S(0)=0.57±0.04 KeV b Di Leva et al 2010

  8. THEORY Nuclear rate error budget: τ n ≈ 100% (0.0003) 4 He 2 H/H d(p, γ ) 3 He 78% (0.06) d(d,n) 3 He 19% (0.02) d(d,p) 3 H 3% (0.013) 6 Li d( α , γ ) 6 Li

  9. Nuclear rates: for d(p, γ ) 3 He also available ab initio calculations (Viviani et al 2000 PRC, Marcucci et al THEORY 2005 PRC, …,Marcucci et al 2016 PRL) Larger cross section than present data fit (Adelberger et al, 2011, Rev. Mod. Phys.) R= <S> TH /<S> exp >1! Important to check LUNA experimentally this result! LUNA 2017-2018? 2 H(p, γ ) 3 He ERNA: S(0)=0.57±0.04 KeV b Di Leva et al 2010 d( α , γ ) 6 Li in progress (A. Grassi et al)

  10. • non minimal models: extra radiation g= 5.5 +7 N eff /4 boosts the expansion rate H ξ i = μ i /T i= e, μ , τ boosts the expansion rate H change chemical equilibrium of n/p (v e )

  11. DATA The quest for primordiality Observations in systems negligibly contaminated by stellar evolution (e.g. high redshift); Careful account for galactic chemical evolution.

  12. He recombination lines in ionized H II regions in BCG & DATA regression to zero metallicity. Small statistical error but large systematics Recent analyses: Izotov & Thuan 2014 Aver, Olive & Skillmann 2015 Aver, Olive & Skillmann 2015

  13. DATA Main sources of systematics: i) interstellar reddening ii) temperature of clouds iii) electron density Possible developments: using more H lines Aver et al 2010

  14. New recent analysis use also the infrared I λ 10830 Y p =0.2551±0.0022 Izotov et al 2014 Y p =0.2449±0.0040 Aver et al 2015 Y p =0.245±0.0040 PDG 2016

  15. DATA 2 H measures baryon fraction. Quite good agreement with Planck determination: Ω b h 2 = 0.02225± 0.00032 Observations: absorption lines in clouds of light from high redshift background QSO

  16. DATA 2 H/H(10 -5 )=2.53±0.04 Cooke et al, 2014, ApJ 2 H/H(10 -5 )=2.55±0.03 Riemer-Sorensenet al, 2017, MNRAS

  17. DATA 3 He observed on Earth (nuclear weapons) observed in the Solar System (Sun): 2 H 3 He observed in the ISM 3 He/H= 0.1 observed in planetary nebulae and H II regions outside the solar system ( 3 He + spin flip 3.46 cm wavelength band)

  18. DATA No clear evidence for dependence upon metallicity Bania et al 2002 3 He/H<(1.1±0.2) 10 -5

  19. DATA 7 Li (and 6 Li) still a puzzle. Spite plateau in metal poor dwarfs questioned

  20. DATA [ 7 Li/H ]= 12 + log 10 ( 7 Li/H) (Bonifacio et al. 97) [ 7 Li/H ] = 2.24 ± 0.01 (Ryan et al. 99, 00) [ 7 Li/H ] = 2.09 + 0.19- 0.13 (Bonifacio et al. 02) [ 7 Li/H ] = 2.34 ± 0.06 (Melendez et al. 04) [ 7 Li/H ] = 2.37 ± 0.05 (Charbonnel et al. 05) [ 7 Li/H ] = 2.21 ± 0.09 (Asplund et al. 06) [ 7 Li/H ] = 2.095 ± 0.055 (Korn et al. 06) [ 7 Li/H ] = 2.54 ± 0.10 A factor 2 or more below BBN prediction, trusting 2 H+PLANCK 2015 baryon density and 3 He upper bound

  21. DATA Nuclear rates under control ( 3 He( α , γ ) 7 Be & 7 Be (d,p)2 α ) Systematics in measurements? Non standard BBN (catalyzed BBN)? Observed values NOT primordial 6 Li/ 7 Li - .05 (Asplund et al 2006), expected much smaller!! Convective motions might generate asymmetries in the line shape and mimic the presence of 6 Li

  22. Comparison Standard scenario

  23. DATA MINIMAL SCENARIO: ALL FIXED! Ω b h 2 =0.0223 ± 0.0002 Y p =0.2467± 0.0001 ± 0.0003 PLANCK 2015 2 H/H=2.60 ± 0.03 ± 0.07 EXP: Y p =0.2551±0.0022 !!! Y p =0.2449±0.0040 ! 2 H/H(10 -5 )=2.55±0.03 !!

  24. RESUL TS PLANCK 2015

  25. Discrepancies at worst 2 σ :  New physics?  systematics/uncertainties DATA Example: increasing d(p, γ ) 3 He (as from by ab initio calculations) deuterium decreases, better agreement with Planck Ω b h 2 (Di Valentino et al 2014, Planck 2015)

  26. Using D/H D/H, R=1.16 Planck 2015 D/H, R=1

  27. Marcucci et al 2016

  28. Comparison Exotic scenarios

  29. For several cosmological observables, all in a single parameter   4 / 3 π 2    ρ rad = 1 + 7 4 4 N eff 15 T      γ 8  11    Instantaneous v decoupling value for T v / T γ CMB and BBN scrutinize different “mass” scales!

  30. RESUL TS Room for extra light particles? 4 He grows with N eff Steigman 2008

  31. 2-3 σ claim ! (Izotov & Thuan 2010,2014) RESUL TS

  32. Izotov et al 2014 N eff = 3.7 ±0.2 But using Aver et al. 2015 (larger error) N eff = 2.9 ±0.3 Planck 2015: N eff = 3.04 ±0.18 !! Remember: CMB and BBN scrutinize different “mass” scales!

  33. Planck 2015

  34. Deuterium constraint: crucial the d(p, γ ) 3 He ! Present data fit (Adelberger et al) leads to a slightly deuterium overproduction which might be compensated by a smaller expansion rate (N eff =2.84) Ab initio calculation gives a larger cross section and lower deuterium yield! In this case better a larger expansion rate (N eff =3.2)

  35. What could it be this putative extra radiation? Sterile neutrinos? Succesfull picture of 3-active neutrino mixing in terms of 2 mass differences and 3 mixing angles. Few parameters describe a lot of data: solar v flux, atmospheric v’s, accelerator v beams! Yet, few anomalies (2-3 σ ) : 1) LSND-MiniBooNE (short baseline exp’s); 2) Reactor anomaly; 3) Gallium anomaly.

  36. LSND+ MiniBooNE: evidence for ν µ → ν e MiniBooNE: excess of ν µ → ν e Interpretation: order 1 eV massive extra sterile neutrino with large mixing angle Δ m 2 ≈ eV 2 sin 2 2 θ ≈ 10 -3 – 1 P e μ =sin 2 2 θ sin 2 (1.27 Δ m 2 L/E) (L in meters, E in MeV)

  37. But for such large mixing angles sterile neutrino too much produced (N eff = 1) The standard case, after Planck 2013 N eff < 3.30±0.27 m s < 0.38 eV New Planck analysis even stronger! (Planck XIII 2015) N eff = 3.04±0.22 m s < 0.38 eV

  38. • Possible way out? active neutrino large ( > 10 -3 )chemical potential, but then v e distortion sterile neutrino “secret interactions” ? Fermi type lagrangian termwith coupling G X “small” G X (<10 4 G F) problem with BBN “large” G X (>10 5 G F ) problem with N eff (smaller than 3 and neutrino mass bounds from CMB)

  39. RESUL TS The Lepton number of the Universe Neutrino chemical potentials change the expansion rate parameter H (larger v energy density); v e chemical potential changes the n-p chemical equilibrium (weak rates); Kang & Steigman 1992 v’s oscillates in flavor space: before BBN v e , v μ & v τ mix their chemical potential. Dolgov et al 2002 i ρ ’=[ Ω , ρ ] + C Ω =M 2 /2p + √ 2 G F (-8p/m W2 E + ρ - ρ )

  40. RESUL TS We must follow v distribution through BBN dynamics

  41. RESUL TS v decouple from the thermal bath, and scatterings & However... pair processes may be inefficient to re-adjust their distribution. Not a perfect FD (in general)!

  42. Neutrino distribution is not a RESUL TS pure FD: v’s slightly hotter G.M., Miele, Pastor, Pisanti and Sarikas, ‘10

  43. Maximal N eff vs θ 13 G.M., Miele, Pastor, Pisanti and Sarikas, ‘10 After T2K results Fogli et al ‘11

  44. Conclusions BBN theory quite accurate, at % level (or better) for main nuclides; Problem: systematics in 4 He measurements; d(p, ) 3 He should be accurately measured in the BBN energy range (30 – 300 keV) Lithium still puzzling ; new observational strategies ! BBN + CMB (PLANCK,…): a tool to constrain new physics.

  45. Reasonable agreement of standard BBN with CMB and data (but 7Li!!) One extra “effective” marginally allowed by data No room for fully thermalized sterile states

  46. Backup slides

  47. Bounds with a conservative 4 He limit 2 extra relativistic states excluded if well thermalized

  48. Planck results also depends upon neutrino masses and σ 8

  49. sin 2 θ 13 =0.04 sin 2 θ 13 =0 Dependence on θ 13 Planck sensitivity Δ N e fg ≈ 0.1 – 0.2

Recommend


More recommend