neutrino nucleosynthesis
play

Neutrino Nucleosynthesis in the outer layers of supernovae A. - PowerPoint PPT Presentation

Neutrino Nucleosynthesis in the outer layers of supernovae A. Sieverding 1 , L. Huther 1 , G. Mart nez-Pinedo 1 , K. Langanke 1 , 2 ,A. Heger 3 1 Technische Universit at Darmstadt 2 GSI Helmholtzzentrum, Darmstadt 3 Monash Centre for


  1. Neutrino Nucleosynthesis in the outer layers of supernovae A. Sieverding 1 , L. Huther 1 , G. Mart´ ınez-Pinedo 1 , K. Langanke 1 , 2 ,A. Heger 3 1 Technische Universit¨ at Darmstadt 2 GSI Helmholtzzentrum, Darmstadt 3 Monash Centre for Astrophysics, Melbourne HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research NPCSM long-term workshop Yukawa institute for Theoretical Physics 15 Nov. 2016 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  2. Outline Introduction 1 Neutrino nucleosynthesis Review Constraints on cross-sections Supernova model Results 2 The ν process with updated physics Radioactive nuclei Conclusions and Outlook 3 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  3. Neutrinos and Supernovae The core of a massive star collapses after the nuclear burning phases Collapse stops when nuclear densities are reached Hydrodynamic shock triggers explosive nucleosynthesis Cooling core emits neutrinos Neutrinos can influence the nucleosynthesis in outer layers of SNe Schematic structure of a massive star Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  4. Neutrinos and Supernovae Neutrinos are crucial for many aspects of Supernovae 1 Deleptonization and Shock revival ◮ Neutrino signal ◮ Explosion Dynamics 2 Neutrino driven wind ◮ setting initial p/n ratio 3 ν process in the ejecta ◮ Ejecta composition ◮ Production of radioactive Modified, from H.T. Janka isotopes Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  5. Neutrino nucleosynthesis Charged-current (CC) Emission of 10 58 neutrinos e + ,e - γ from the collapsing core ν e, ν e p B * A � E ν � ≈ 8 − 20 MeV n � E ν e � < � E ¯ ν e � ≤ � E ν µ,τ � α Neutral-current (NC) ν x ' γ ν x p A * A n α Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  6. Neutrino nucleosynthesis Charged-current (CC) Emission of 10 58 neutrinos e + ,e - γ from the collapsing core ν e, ν e p B * A � E ν � ≈ 8 − 20 MeV n � E ν e � < � E ¯ ν e � ≤ � E ν µ,τ � α Inverse β -decay Neutral-current (NC) ν x ' γ ν x p A * A n α Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  7. Neutrino nucleosynthesis Charged-current (CC) Emission of 10 58 neutrinos e + ,e - γ from the collapsing core ν e, ν e p B * A � E ν � ≈ 8 − 20 MeV n � E ν e � < � E ¯ ν e � ≤ � E ν µ,τ � α Inverse β -decay Neutral-current (NC) ν x ' γ Particle evaporation ν x p A * A n α Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  8. Neutrino nucleosynthesis Charged-current (CC) Emission of 10 58 neutrinos e + ,e - γ from the collapsing core ν e, ν e p B * A � E ν � ≈ 8 − 20 MeV n � E ν e � < � E ¯ ν e � ≤ � E ν µ,τ � α Inverse β -decay Neutral-current (NC) ν x ' γ Particle evaporation Capture of spallation ν x p A * A products n α Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  9. Neutrino nucleosynthesis The supernova shock triggers photo dissociation and subsequent particle capture reactions ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  10. Neutrino nucleosynthesis The supernova shock triggers photo dissociation and subsequent particle capture reactions ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures Main candidates for neutrino nucleosynthesis: 7 Li and 11 B via 4 He( ν x , ν ′ x p/n) and 12 C( ν x , ν ′ x p) ... Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  11. Neutrino nucleosynthesis The supernova shock triggers photo dissociation and subsequent particle capture reactions ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures Main candidates for neutrino nucleosynthesis: 7 Li and 11 B via 4 He( ν x , ν ′ x p/n) and 12 C( ν x , ν ′ x p) ... 19 F via 20 Ne( ν x , ν ′ x p/n) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  12. Neutrino nucleosynthesis The supernova shock triggers photo dissociation and subsequent particle capture reactions ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures Main candidates for neutrino nucleosynthesis: 7 Li and 11 B via 4 He( ν x , ν ′ x p/n) and 12 C( ν x , ν ′ x p) ... 19 F via 20 Ne( ν x , ν ′ x p/n) 138 La and 180 Ta via 138 Ba( ν e ,e − ) and 180 Hf( ν e ,e − ) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  13. Outline Introduction 1 Neutrino nucleosynthesis Review Constraints on cross-sections Supernova model Results 2 The ν process with updated physics Radioactive nuclei Conclusions and Outlook 3 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  14. First ideas 26 Mg( ν e ,e − ) as possible mechanism to produce radioactive 26 Al ν absorption on nucleons and 4 He spallation could lead to the production of D,Li,Be,B first estimates of the relevant 4 He spallation as neutron reaction rates source Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  15. Detailed calculations extended set of neutrino nucleus reactions detailed stellar models analytic formula for ρ ( t ), T ( t ) ∝ T max e − t /τ for t ≥ t 0 T max ∝ � E expl � 1 / 4 � − 3 / 4 R � × 10 51 erg 10 9 cm constant expansion velocity Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  16. Neutrino-Nucleus cross sections based on shell model calculations for key nuclei ( 12 C, 16 O, 20 Ne, 24 Mg . . . ) Hydrodynamic simulation of piston driven explosion Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  17. Dedicated experiments for the determination of cross sections Detailed calculations of cross sections observational constraints and uncertainties Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  18. Neutrino Spectra from state-of-the art SN simulations current standard 1 f ν ( E ν ) ∝ 1+exp( E ν / T ν ) ◮ � E ν e � = 12 MeV ◮ � E ¯ ν e � = 15 MeV ◮ � E ν, ¯ ν µ,τ � = 19MeV ◮ “high ν energies” Bruenn et al. (1983) Detailed descriptions of neutrino transport are included More channels for neutrino-matter interactions Inelastic channels reduce the average energies Fischer et al. (2014) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  19. Description of ν emission � � − t Decreasing Luminosity L ν ∝ exp τ ν Emission of 3 × 10 53 ergs Fermi-Dirac distributed energies, � E ν � = 3 . 15 × T ν Low ν energies � E ν e � = 9 MeV ( T ν = 2 . 8 MeV ) � E ¯ ν e � = 13 MeV ( T ν = 4 MeV ) � E ν µ,τ � = 13 MeV ( T ν = 4 MeV ) Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  20. Description of ν emission � � − t Decreasing Luminosity L ν ∝ exp τ ν Emission of 3 × 10 53 ergs Fermi-Dirac distributed energies, � E ν � = 3 . 15 × T ν High ν energies Low ν energies � E ν e � = 9 MeV ( T ν = 2 . 8 MeV ) T ν e = 4 MeV T ¯ ν e = 5MeV � E ¯ ν e � = 13 MeV ( T ν = 4 MeV ) � E ν µ,τ � = 13 MeV ( T ν = 4 MeV ) T ν, ¯ ν µ,τ = 6MeV Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  21. 14 postbounce time(s) 6 4 2 0 model 12 5 10 -1 10 (MeV) 10 0 10 1 10 2 20 15 10 8 Realistic ν signal ν e ν e ¯ ν x � E ν � ν e model L ν (FOE/s) Points for improvement: ν signal from a multi-D ◮ time-dependence of ν simulation for a 27 M ⊙ progenitor energies of solar metalicity provided by T. ◮ burst luminosities Janka ◮ non- Fermi-Dirac spectra Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  22. Outline Introduction 1 Neutrino nucleosynthesis Review Constraints on cross-sections Supernova model Results 2 The ν process with updated physics Radioactive nuclei Conclusions and Outlook 3 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

  23. Neutrino cross sections Two step process: Excitation and decay σ k σ RPA X → Y ( E ν ) = � ( X ) × P i ( Y ) i i Excitation cross-section based on RPA Decay rates from Hauser-Feshbach statistical models Including emission of up to 4 particles L. Huther, PhD ThesisTU Darmstadt, 2014 Neutrino Nucleosynthesis A. Sieverding, L. Huther, G. Mart´ ınez-Pinedo, A. Heger 2016

Recommend


More recommend