tev galactic source physics with cta
play

TeV Galactic Source Physics with CTA TeVPA 2010 TeV -rays and CTA - PowerPoint PPT Presentation

CTA Galactic Physics Y. Gallant, M. Renaud TeV Galactic Source Physics with CTA TeVPA 2010 TeV -rays and CTA TeV -ray astronomy CTA project Yves Gallant, Matthieu Renaud Shell-type SNRs TeV shells LPTA, CNRS/IN2P3, U. Montpellier 2,


  1. CTA Galactic Physics Y. Gallant, M. Renaud TeV Galactic Source Physics with CTA TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Yves Gallant, Matthieu Renaud Shell-type SNRs TeV shells LPTA, CNRS/IN2P3, U. Montpellier 2, France CTA simulations Pulsar Wind Nebulae for the CTA consortium Young and older PWNe PWN population and CTA TeV Particle Astrophysics 2010 Multimessenger HE astrophysics session Paris, July 19, 2010 TeV γ -rays and the Cherenkov Telescope Array (CTA) Shell-Type Supernova Remnants Pulsar Wind Nebulae

  2. Very High Energy (VHE, 30 GeV < E γ < 100 TeV) CTA Galactic Physics Y. Gallant, M. Renaud or “TeV” γ -Ray astronomical detectors TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  3. Imaging high-energy atmospheric showers CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  4. Stereo imaging and event reconstruction CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  5. Energy threshold and large telescopes CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA ◮ energy threshold limited by Cherenkov photon collecting area TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA ◮ MAGIC telescopes : 17-meter diameter telescopes ◮ energy threshold can reach as low as 25 GeV

  6. CTA (Cherenkov Telescope Array) project CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA ◮ Next generation of imaging atmospheric Cherenkov telescopes ◮ One order of magnitude sensitivity improvement over current generation of IACT instruments (e.g. H.E.S.S. or MAGIC) ◮ Energy range from ∼ 10 GeV to 100 TeV ◮ Two sites foreseen : Northern and Southern Hemisphere (better for Galactic physics)

  7. Sample CTA configurations under study CTA Galactic Physics Y. Gallant, M. Renaud ◮ Many telescopes spread over large area for sensitivity TeVPA 2010 ◮ Combination of different size telescopes for energy coverage TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations ◮ B: compact distribution Pulsar Wind Nebulae Young and older PWNe with large telescopes PWN population and CTA ◮ C: extended distribution with medium telescopes ◮ E: combination of both ◮ In what follows, compare performance of three configurations optimised for different energy ranges ◮ More details on CTA project in poster by I. Puerto et al. and review talk by J. Hinton

  8. The Galactic TeV γ -ray sky (I) CTA Galactic Physics Y. Gallant, M. Renaud ◮ much improved sensitivity of current generation of Imaging TeVPA 2010 Atmospheric Cherenkov Telescopes (IACTs), inaugurated by TeV γ -rays and CTA HESS (initial 4-telescope array completed >6 years ago) TeV γ -ray astronomy ◮ HESS Galactic plane survey : longitudes ℓ ≈ − 80 ◦ to 60 ◦ CTA project Shell-type SNRs TeV shells (Chaves, H.E.S.S., 2009 ICRC) CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA ◮ currently about 70 Galactic TeV sources known

  9. The Galactic TeV γ -ray sky (II) CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 ◮ Of particular interest are shell-type supernova remants (SNRs) TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA ◮ latest discovery : Tycho ’s SNR ( VERITAS , 2010)

  10. High-energy observations of (shell-type) SNRs CTA Galactic Physics Y. Gallant, M. Renaud and the origin of Galactic Cosmic Rays TeVPA 2010 ◮ Supernova remnants are widely considered likely sources of TeV γ -rays and CTA Galactic cosmic rays up to the “knee”, E ∼ 3 × 10 15 eV : TeV γ -ray astronomy CTA project ◮ well-studied shock acceleration mechanism; Shell-type SNRs TeV shells ◮ GCR composition compatible with an SNR origin; CTA simulations ◮ energetics require ∼ 10% of total SN energy of 10 51 erg Pulsar Wind Nebulae Young and older PWNe PWN population and CTA X-ray observations of SNRs ◮ Observational evidence for accelerated e − (synchrotron) ◮ indirect evidence for accelerated protons/ions (magnetic field amplification, modified hydrodynamics) TeV γ -ray observations ◮ For accelerated p (and ions), hadronic interactions with ambient matter produce π 0 , decaying into two γ -rays which we observe ◮ On of aims of TeV γ -ray astronomy (e.g. Drury et al. 1994) ◮ But how to discriminate from leptonic (IC) emission?

  11. A historical TeV shell SNR : SN 1006 CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 ◮ H.E.S.S. detection of the remnant of SN 1006 : TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells ◮ 130 hours of good-quality data CTA simulations Pulsar Wind Nebulae ◮ morphology correlated with Young and older PWNe PWN population and CTA non-thermal X-rays (contours) ◮ reveals spatial distribution of high-energy particles ◮ ambiguity between hadronic and leptonic (IC) emission scenarii (Naumann-Godo et al., H.E.S.S., 2009 ICRC ; A&A , in press)

  12. A historical TeV shell SNR : SN 1006 CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 ◮ H.E.S.S. detection of the remnant of SN 1006 : TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA (Naumann-Godo et al., H.E.S.S., 2009 ICRC ; A&A , in press) ◮ leptonic scenario suggests relatively low B -field ≈ 30 µ G ◮ hadronic scenario require hard spectrum, E cutoff ∼ 10 TeV

  13. TeV shell SNRs : examples CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  14. Identifying a new TeV shell : HESS J1731–347 CTA Galactic Physics Y. Gallant, M. Renaud ◮ discovered in HESS Galactic plane survey; Γ = 2 . 3 ± 0 . 1 ± 0 . 2 TeVPA 2010 ◮ coincident radio shell discovered with ATCA data: G 353.6–0.7 TeV γ -rays and CTA TeV γ -ray astronomy CTA project (Tian et al. 2008) Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  15. Identifying a new TeV shell : HESS J1731–347 CTA Galactic Physics Y. Gallant, M. Renaud ◮ discovered in HESS Galactic plane survey; Γ = 2 . 3 ± 0 . 1 ± 0 . 2 TeVPA 2010 ◮ coincident radio shell discovered with ATCA data: G 353.6–0.7 TeV γ -rays and CTA TeV γ -ray astronomy CTA project (Tian et al. 2008) (Acero et al., ICRC 2009) Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA ◮ deeper HESS observations: evidence for limb-brightening ◮ X-ray observations of (part of) shell reveal rims of emission with non-thermal spectra! (no evidence for thermal emission) ◮ X-ray absorption gradient suggest SNR lies behind a CO cloud ◮ D > 3 . 5 kpc ⇒ L 1 − 10 TeV > 2 × 10 34 erg/s, R > 15 pc

  16. TeV shell SNRs : simulations CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA images simulated with E min threshold that optimises S/N ratio : 0.5–0.7 TeV depending on object spectrum

  17. Simulated CTA observations : D = 2 kpc CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 RX J1713.7-like SNR, 20 hour exposure (Galactic plane survey) TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  18. Simulated CTA observations : D = 4 kpc CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 RX J1713.7-like SNR, 20 hour exposure (Galactic plane survey) TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  19. Simulated CTA observations : D = 8 kpc CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 RX J1713.7-like SNR, 20 hour exposure (Galactic plane survey) TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

  20. Detectability and resolvability with CTA CTA Galactic Physics Y. Gallant, M. Renaud TeVPA 2010 TeV γ -rays and CTA TeV γ -ray astronomy CTA project Shell-type SNRs TeV shells CTA simulations Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

Recommend


More recommend