Noisy In-Memory Recursive Computation with Memristor Crossbars Elsa Dupraz † , Lav Varshney ‡ † elsa.dupraz@imt-atlantique.fr IMT Atlantique, Lab-STICC, UBL ‡ varshney@illinois.edu University of Illinois at Urbana-Champaign Funded by Thomas Jefferson fund and by ANR project EF-FECtive
Section 1: Introduction 2 Computation in memory Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion ◮ Data transfer bottleneck in conventional setups : Memory Processing units Memory banks + bottleneck ◮ In-memory computing : Memory Memory banks Processing units + Computationnal memory ◮ Memristors [SSSW08] : N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 1: Introduction 3 Dot-product computation from memristor crossbars [LWFV18] Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion Memristor crossbar : Notation : ... ◮ u i : Input voltages ◮ x j : Output voltages ... ◮ g ij : Conductance values N g ij ... ... ... � x j = u i ... � N k = 0 g kj i = 1 Issue : ◮ Uncertainty on conductance values In this work : noisy computation from memristor crossbars N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 1: Introduction 4 Existing works Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion Existing works ◮ Logic-in-Memory [GTDS17, AHC + 19] ◮ Dot-product computation from memristor crossbars [NKSB14] ◮ Memristor crossbars for Machine Learning [LWFV18, JAC + 19] ◮ Hamming distance computation [CC15] ◮ Noisy Hamming distance computation [CSD18] In this work ◮ Noisy dot-product computation in memory : Probability distribution of final computation error ◮ Noisy iterative dot-product computation in memory : Recursive expressions of means and variances of successive outputs N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 1: Introduction 5 Table of contents Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion 1. Introduction 2. Dot-product computation 3. Iterative dot-product computation 4. Simulation results 5. Conclusion N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 2: Dot-product computation 6 Table of contents Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion 1. Introduction 2. Dot-product computation 3. Iterative dot-product computation 4. Simulation results 5. Conclusion N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 2: Dot-product computation 7 Computation model Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion ... Dot-product computation : N G ij � X j = U i ... � N k = 0 G kj i = 1 Noisy computation : ... ... ... ... ◮ G ij , U i are independent random variables ◮ 1st and 2nd order moments ◮ E [ G ij ] = g ij (target value) ◮ E [ U i ] = u i (target value) Objective : determine the probability distributions of the X j N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 2: Dot-product computation 8 Main result Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion Objective : determine the probability distribution of X j = � N G ij k = 0 G kj U i i = 1 � N Theorem � 2 �� N i = 0 g ij If α j = lim � = 0, then N 2 N →∞ � � N 2 0 , 1 � d � X j − x j ⇒ N √ v j α 2 j ◮ x j = � N g ij k = 0 g kj u i is the true output value i = 1 � N ◮ d is the convergence in distribution N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 2: Dot-product computation 9 Conclusions of the Theorem Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion ◮ The Theorem is valid for a large range of distributions ◮ The distribution of X j can be approximated by a Gaussian : � � v j X j ∼ AN x j , α 2 j N 4 ◮ The mean-squared error can be approximated as : v j E [( X j − x j ) 2 ] ≈ j N 4 . α 2 ◮ Conclusion : if v j and α j tend to constants, E [( X j − x j ) 2 ] → 0 N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 3: Iterative dot-product computation 10 Table of contents Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion 1. Introduction 2. Dot-product computation 3. Iterative dot-product computation 4. Simulation results 5. Conclusion N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 3: Iterative dot-product computation 11 Computation model Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion ... Iterative dot-product computation : X ( T ) = G ( T ) G ( T − 1 ) · · · G ( 1 ) X ( 0 ) ... Recursion : ... ... ... ◮ X ( t ) = G ( t ) X ( t − 1 ) . ... Objective : Recursive expressions of 1st and 2nd order statistics of the X ( t ) N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 3: Iterative dot-product computation 12 Main results Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion G ij Objective : First-order moments of X ( t ) = � N k = 0 G kj X ( t − 1 ) j i = 1 � N i Proposition 1 : Mean The second-order Taylor expansion of the mean µ ( t ) of X ( t ) is given by j j g ( t ) N � � Θ j j ) 2 + Γ j Λ j 1 ij µ ( t ) � µ ( t − 1 ) = − j ) 3 + O j i δ ( t ) ( δ ( t ) ( δ ( t ) ( δ ( t ) j ) 3 i = 1 j where δ ( t ) = � N k = 0 g kj . j N →∞ µ ( t ) = x ( t ) Remark : we have that lim j j N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 3: Iterative dot-product computation 13 Main results Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion G ij Objective : Second-order moments of X ( t ) = � N k = 0 G kj X ( t − 1 ) j i = 1 � N i Proposition 2 : Variance The second-order Taylor expansion of the variance γ ( t ) of X ( t ) is given by j j � 2 � � � j ) 3 + 3 Θ 2 j Γ j Θ j Ψ j j ) 2 − 2 Λ j Θ j 1 j ) 2 + O γ ( t ) j ) 4 − ( µ ( t ) = + j δ ( t ) ( δ ( t ) ( δ ( t ) ( δ ( t ) ( δ ( t ) j ) 3 j Proposition 3 : Covariance The second-order Taylor expansion of the covariance γ ( t ) jj ′ of X ( t ) , X ( t ) j ′ , with j � = j ′ , is j given by N N � � 1 γ ( t ) � � λ ij λ i ′ j ′ γ ( t − 1 ) jj ′ = + O i , i ′ ( δ ( t ) j ) 3 i = 1 i ′ = 1 N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 4: Simulation results 14 Table of contents Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion 1. Introduction 2. Dot-product computation 3. Iterative dot-product computation 4. Simulation results 5. Conclusion N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 4: Simulation results 15 Synthetic data Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion Parameters : ◮ Uniform random variables G ij , U i , ◮ Dot-product computation : N = 1000, K = 10000 samples X j ◮ Iterative computation : T = 8, N ∈ { 256 , 512 , 1024 } Histogram for dot-product computation : Variance approx for iterative computation : Histogram of Xj 14 Gaussian Approximation 10 - 5 Density Approximation of [18] 12 10 - 10 10 Variance 8 10 - 15 f 6 Empirical, N = 256 Gaussian approximation, N = 256 10 - 20 Taylor expansion, N = 256 Empirical, N = 512 4 Gaussian approximation, N = 512 Taylor expansion, N = 512 10 - 25 Empirical, N = 1024 2 Gaussian approximation, N = 1024 Taylor expansion, N = 1024 0 2 4 6 8 4.8 4.9 5 5.1 5.2 Iteration Number xj N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Section 4: Simulation results 16 PCA Introduction Dot-product computation Iterative dot-product computation Simulation results Conclusion Parameters : ◮ Memristor-based PCA [LWFV18] ◮ 10 images of size 16 × 16 ◮ Variance σ 2 ∈ { 0 . 01 , 1 , 4 } Results : Original image Noisy image Standard PCA 15 15 15 12 12 12 9 9 9 6 6 6 3 3 3 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 Mem. PCA ( σ =0.1) Mem. PCA ( σ =1) Mem. PCA ( σ =2) 15 15 15 12 12 12 9 9 9 6 6 6 3 3 3 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 t N OISY I N -M EMORY R ECURSIVE C OMPUTATION WITH M EMRISTOR C ROSSBARS Elsa Dupraz, Lav Varshney
Recommend
More recommend