multiplicative geometric structures
play

Multiplicative geometric structures Henrique Bursztyn, IMPA (joint - PowerPoint PPT Presentation

Multiplicative geometric structures Henrique Bursztyn, IMPA (joint with Thiago Drummond, UFRJ) Workshop on EDS and Lie theory Fields Institute, December 2013 Outline: 1. Motivation: geometry on Lie groupoids 2. Multiplicative structures 3.


  1. Multiplicative geometric structures Henrique Bursztyn, IMPA (joint with Thiago Drummond, UFRJ) Workshop on EDS and Lie theory Fields Institute, December 2013

  2. Outline: 1. Motivation: geometry on Lie groupoids 2. Multiplicative structures 3. Infinitesimal/global correspondence 4. Examples and applications

  3. 1. Motivation Lie groupoids are often equipped with “compatible” geometry...

  4. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles)

  5. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g ))

  6. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g )) ⋄ Poisson-Lie groups : m : G × G → G Poisson map.

  7. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g )) ⋄ Poisson-Lie groups : m : G × G → G Poisson map. ⋄ Symplectic groupoids : graph ( m ) ⊂ G × G × G Lagrangian submf.

  8. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g )) ⋄ Poisson-Lie groups : m : G × G → G Poisson map. ⋄ Symplectic groupoids : graph ( m ) ⊂ G × G × G Lagrangian submf. ⋄ Differential forms : ∂ω = p ∗ 1 ω − m ∗ ω + p ∗ 2 ω = 0.

  9. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g )) ⋄ Poisson-Lie groups : m : G × G → G Poisson map. ⋄ Symplectic groupoids : graph ( m ) ⊂ G × G × G Lagrangian submf. ⋄ Differential forms : ∂ω = p ∗ 1 ω − m ∗ ω + p ∗ 2 ω = 0. ⋄ Complex Lie groups : m : G × G → G holomorphic map.

  10. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g )) ⋄ Poisson-Lie groups : m : G × G → G Poisson map. ⋄ Symplectic groupoids : graph ( m ) ⊂ G × G × G Lagrangian submf. ⋄ Differential forms : ∂ω = p ∗ 1 ω − m ∗ ω + p ∗ 2 ω = 0. ⋄ Complex Lie groups : m : G × G → G holomorphic map. ⋄ Contact structures, distributions, projections (e.g. connections) ...

  11. 1. Motivation Lie groupoids are often equipped with “compatible” geometry... ⋄ functions : f ∈ C ∞ ( G ), f ( gh ) = f ( g ) + f ( h ) (1-cocycles) ⋄ Vector fields : infinitesimal automorphisms ( X gh = l g ( X h ) + r h ( X g )) ⋄ Poisson-Lie groups : m : G × G → G Poisson map. ⋄ Symplectic groupoids : graph ( m ) ⊂ G × G × G Lagrangian submf. ⋄ Differential forms : ∂ω = p ∗ 1 ω − m ∗ ω + p ∗ 2 ω = 0. ⋄ Complex Lie groups : m : G × G → G holomorphic map. ⋄ Contact structures, distributions, projections (e.g. connections) ... Recurrent problem: infinitesimal counterparts, integration...

  12. Some cases have been considered, through different methods...

  13. Some cases have been considered, through different methods... [1] Crainic: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. (2003) [2] Drinfel’d: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Soviet Math. Dokl. (1983). [3] Lu, Weinstein: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. (1990). [4] Weinstein: Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (1987). [5] Mackenzie, Xu: Lie bialgebroids and Poisson groupoids. Duke Math. J. (1994), [6] Mackenzie, Xu: Integration of Lie bialgebroids. Topology (2000). [7] B., Crainic, Weinstein, Zhu: Integration of twisted Dirac brackets, Duke Math. J. (2004). [8] B., Cabrera: Multiplicative forms at the infinitesimal level. Math. Ann. (2012). [9] Crainic, Abad: The Weil algebra and Van Est isomorphism. Ann. Inst. Fourier (2011). [10] Laurent, Stienon, Xu: Integration of holomorphic Lie algebroids. Math.Ann. (2009). [11] Iglesias, Laurent, Xu: Universal lifting and quasi-Poisson groupoids. JEMS (2012). [12] Crainic, Salazar, Struchiner: Multiplicative forms and Spencer operators.

  14. 2. Multiplicative tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ). Consider G ⇒ M ,

  15. 2. Multiplicative tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ). Consider G ⇒ M , T G ⇒ TM , T ∗ G ⇒ A ∗ are Lie groupoids; also their direct sums.

  16. 2. Multiplicative tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ). Consider G ⇒ M , T G ⇒ TM , T ∗ G ⇒ A ∗ are Lie groupoids; also their direct sums. Consider the Lie groupoid G = ( ⊕ q T ∗ G ) ⊕ ( ⊕ p T G ) ⇒ M = ( ⊕ q A ∗ ) ⊕ ( ⊕ p TM ) .

  17. 2. Multiplicative tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ). Consider G ⇒ M , T G ⇒ TM , T ∗ G ⇒ A ∗ are Lie groupoids; also their direct sums. Consider the Lie groupoid G = ( ⊕ q T ∗ G ) ⊕ ( ⊕ p T G ) ⇒ M = ( ⊕ q A ∗ ) ⊕ ( ⊕ p TM ) . View τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ) as function ¯ τ ∈ C ∞ ( G ): τ ¯ ( α 1 , . . . , α q , X 1 , . . . , X p ) �→ τ ( α 1 , . . . , α q , X 1 , . . . , X p ) .

  18. 2. Multiplicative tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ). Consider G ⇒ M , T G ⇒ TM , T ∗ G ⇒ A ∗ are Lie groupoids; also their direct sums. Consider the Lie groupoid G = ( ⊕ q T ∗ G ) ⊕ ( ⊕ p T G ) ⇒ M = ( ⊕ q A ∗ ) ⊕ ( ⊕ p TM ) . View τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ) as function ¯ τ ∈ C ∞ ( G ): τ ¯ ( α 1 , . . . , α q , X 1 , . . . , X p ) �→ τ ( α 1 , . . . , α q , X 1 , . . . , X p ) . Definition : τ ∈ C ∞ ( G ) is multiplicative. (1-cocycle) τ is multiplicative if ¯

  19. t ❛ ❛ ❛ ❛ Infinitesimal description?

  20. t ❛ ❛ ❛ ❛ Infinitesimal description? For functions: multiplicative f ∈ C ∞ ( G ) ⇌ µ ∈ Γ( A ∗ ), d A µ = 0.

  21. t ❛ ❛ ❛ ❛ Infinitesimal description? For functions: multiplicative f ∈ C ∞ ( G ) ⇌ µ ∈ Γ( A ∗ ), d A µ = 0. Given a ∈ Γ( A ), L a r f = t ∗ ( µ ( a )) .

  22. ❛ Infinitesimal description? For functions: multiplicative f ∈ C ∞ ( G ) ⇌ µ ∈ Γ( A ∗ ), d A µ = 0. Given a ∈ Γ( A ), L a r f = t ∗ ( µ ( a )) . For tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ), want ¯ µ : Γ( A ) → C ∞ ( M ), τ = t ∗ (¯ L ❛ r ¯ µ ( ❛ )) , for ❛ ∈ Γ( A ).

  23. Infinitesimal description? For functions: multiplicative f ∈ C ∞ ( G ) ⇌ µ ∈ Γ( A ∗ ), d A µ = 0. Given a ∈ Γ( A ), L a r f = t ∗ ( µ ( a )) . For tensors τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ), want ¯ µ : Γ( A ) → C ∞ ( M ), τ = t ∗ (¯ L ❛ r ¯ µ ( ❛ )) , for ❛ ∈ Γ( A ). Enough to use particular types of sections ❛ ∈ Γ( A )...

  24. t Key facts: ⋄ Information about L ❛ r ¯ τ encoded in L a r τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ), i a r τ ∈ Γ( ∧ q T G ⊗ ∧ p − 1 T ∗ G ), i t ∗ α τ ∈ Γ( ∧ q − 1 T G ⊗ ∧ p T ∗ G ), for a ∈ Γ( A ), α ∈ Ω 1 ( M ).

  25. Key facts: ⋄ Information about L ❛ r ¯ τ encoded in L a r τ ∈ Γ( ∧ q T G ⊗ ∧ p T ∗ G ), i a r τ ∈ Γ( ∧ q T G ⊗ ∧ p − 1 T ∗ G ), i t ∗ α τ ∈ Γ( ∧ q − 1 T G ⊗ ∧ p T ∗ G ), for a ∈ Γ( A ), α ∈ Ω 1 ( M ). ⋄ The map t ∗ : C ∞ ( M ) → C ∞ ( G ) restricts to Γ( ∧ q A ⊗ ∧ p T ∗ M ) → Γ( ∧ q T G ⊗ ∧ p T ∗ G ) , χ ⊗ α �→ χ r ⊗ t ∗ α

  26. t t t τ = t ∗ (¯ As a result of L ❛ r ¯ µ ( ❛ )), ¯ µ completely determined by

  27. t t t τ = t ∗ (¯ As a result of L ❛ r ¯ µ ( ❛ )), ¯ µ completely determined by D : Γ( A ) → Γ( ∧ q A ⊗ ∧ p T ∗ M ), l : A → ∧ q A ⊗ ∧ p − 1 T ∗ M , r : T ∗ M → ∧ q − 1 A ⊗ ∧ p T ∗ M ,

  28. τ = t ∗ (¯ As a result of L ❛ r ¯ µ ( ❛ )), ¯ µ completely determined by D : Γ( A ) → Γ( ∧ q A ⊗ ∧ p T ∗ M ), l : A → ∧ q A ⊗ ∧ p − 1 T ∗ M , r : T ∗ M → ∧ q − 1 A ⊗ ∧ p T ∗ M , such that L a r τ = t ∗ ( D ( a )) , i a r τ = t ∗ ( l ( a )) , i t ∗ α τ = t ∗ ( r ( α )). Leibniz-like condition: D ( fa ) = fD ( a ) + df ∧ l ( a ) − a ∧ r ( α )

  29. τ = t ∗ (¯ As a result of L ❛ r ¯ µ ( ❛ )), ¯ µ completely determined by D : Γ( A ) → Γ( ∧ q A ⊗ ∧ p T ∗ M ), l : A → ∧ q A ⊗ ∧ p − 1 T ∗ M , r : T ∗ M → ∧ q − 1 A ⊗ ∧ p T ∗ M , such that L a r τ = t ∗ ( D ( a )) , i a r τ = t ∗ ( l ( a )) , i t ∗ α τ = t ∗ ( r ( α )). Leibniz-like condition: D ( fa ) = fD ( a ) + df ∧ l ( a ) − a ∧ r ( α ) We call ( D , l , r ) the infinitesimal components of τ .

Recommend


More recommend