multi particle production in small systems from cgc
play

Multi-particle production in small systems from CGC Prithwish - PowerPoint PPT Presentation

Multi-particle production in small systems from CGC Prithwish Tribedy 7th International Workshop on Multiple Partonic Interactions at the LHC The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy 1 outline


  1. Multi-particle production in small systems from CGC Prithwish Tribedy 7th International Workshop on Multiple Partonic Interactions at the LHC The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy 1

  2. outline • Introduction • Framework of color glass condensate • Phenomenology of high multiplicity events • Combining CGC with PYTHIA Based on the work done in collaboration with : K. Dusling, L. McLerran, B. Schenke, S. Schlichting & R. Venugopalan 2

  3. Multi-particle production at high energies Goal : Study correlated production of particles * + * + ⌧ � d N d N d N ( ) d y 1 d 2 p ⊥ 1 . . . d y q d 2 p ⊥ q d y 1 d 2 p ⊥ 1 d y q d 2 p ⊥ q . . . Focus : Collisions of small systems p+p and p+Pb are interesting as final state effects are minimal We need : • An ab-initio framework of particle production • Full treatment of different sources of fluctuations • State-of-the art treatment of fragmentation 3

  4. Phenomena we want to describe arXiv: 1011.5531 Origin of high multiplicity events 4

  5. Phenomena we want to describe arXiv: 1509.04776, 1210.5482 arXiv: 1011.5531 p+p p+A Systematics of Δη - Δφ correlations Origin of high multiplicity events Similar underlying dynamics must drive these phenomenon Energy dependence of ridge in p+p 5

  6. Particle production at high energies Multi-particle production at high energies in Regge Gribov limit (x → 0) Colliding hadrons/nuclei : • Saturation : Non-linear process strops growth of gluons, semi- hard saturation scale Q s (x) > Λ QCD -Y ) • Gluon dominated wave function, peaked at Q s (x~x 0 e arXiv: 1212.1701 6

  7. Particle production at high energies Multi-particle production at high energies in Regge Gribov limit (x → 0) Colliding hadrons/nuclei : • Saturation : Non-linear process strops growth of gluons, semi-hard saturation scale Q s (x) > Λ QCD -Y ) • Gluon dominated wave function , peaked at Q s (x~x 0 e arXiv: 1212.1701 Dusling, Li, Schenke 1509.07939 un-integrated gluon distribution 1.2 Y=0 2 =0.168 GeV 2 Q 0 Y=4 1 Y=8 Y=12 N o n linear 0.8 Q s r e g i m e of QCD 0.6 0.4 0.2 0 0.1 1 10 parton transverse momentum (k T ) GeV 7

  8. Particle production at high energies Multi-particle production at high energies in Regge Gribov limit (x → 0) Initial configuration Particle production : • t-channel exchange of ladder JIMWLK evolution like emissions of gluons, • Strong color fields, weak 3 dN/d p coupling, high occupation of gluonic states f(k) ~ A 2 ~1/g 2 8

  9. Particle production at high energies Multi-particle production at high energies in Regge Gribov limit (x → 0) Initial configuration Particle production : • t-channel exchange of ladder JIMWLK evolution like emissions of gluons, • Strong color fields, weak Single gluon emission coupling, high occupancy of gluonic states ~1/g 2 A (classical field) (classical approximation) McLerran, Venugopalan hep-ph/9309289 Color Glass condensate effective field theory → ab-inito framework to this problem 9

  10. Details of CGC the framework h i h ρρ i B • Fundamental objects are Color h ρρ i A Charge density matrices ρ a(x ⊥ , Y) Local Gaussian distribution W[ ρ ] (MV-Model) classical color charge = δ ab δ 2 ( x ⊥ − y ⊥ ) g 2 µ 2 ( x ⊥ ) ρ a ( x ⊥ ) ρ b ( y ⊥ ) ⌦ ↵ h V † V i B • Color field before collisions : solving h V † V i A Yang Mills equations [D μ ,F μν ] = J ν for each configuration of source ρ (x ⊥ ) classical color field D F = 0 D F = J A after collisions ( τ >0) before collisions ( τ <0) Glasma flux tubes —> Domains of free streaming gluons chromo-electric field hep-ph/9809433, hep-ph/0303076, D F = J D F = J B arXiv: 1206.6805 arXiv: 1202.6646 10

  11. Details of the CGC framework Input is constrained by dipole-cross sections in e+p/A collisions Perturbative approach • Employ k T -factorization (p T >Q s ), dilute-dilute/dense systems Non-perturbative approach • Full solutions of CYM on 2+1D lattice : IP-Glasma Monte-Carlo model of initial conditions 11

  12. Multi-particle productions Single-Inclusive M ⇠ ρ 1 ( k ⊥ ) ρ 2 ( p ⊥ � k ⊥ ) ( p ⊥ � k ⊥ ) 2 L γ ( p , k ⊥ ) k ⊥ 2 D E dN |M| 2 ↵ ⌦ ⇠ h ρ ∗ 1 ρ 1 ρ ∗ on ⇠ 2 ρ 2 i Color Averaging dy p d 2 p ⊥ Double-Inclusive ⌧ � ⌧ � ⌧ � dN 2 dN dN C 2 ( p , q ) ≡ − q dy p d 2 p ⊥ dy q d 2 q ⊥ dy p d 2 p ⊥ dy q d 2 q ⊥ ↓ ↓ p connected disconnected ⊥ � ⊥ ⊥ ⊥ q |M| 2 ↵ p ⌦ ! h ρ ∗ 2 ρ 2 ρ 2 i ) 1 ρ ∗ 1 ρ 1 ρ 1 ρ ∗ 2 ρ ∗ ⌦ ↵ 8 topologies 1 topology Dumitru, Gelis, McLerran, It can be shown Venugopalan 0804.3858 12

  13. n-particle correlations CGC framework is extendable to n-particle correlations 1 ... q ... 2 ... q ... p p p p p p p p p p q q 1 1 2 1 2 n (n-1)! topologies Naturally generates Negative Binomial distribution probability distribution n n k k Γ ( k + n ) ¯ 2 − 1) Q s 2 S ⊥ k = κ ( N c NB = P n n + k ) n + k Γ ( k ) Γ ( n + 1) (¯ 2 π High-multiplicity events —> originate from correlated production of n-particles —> Highly non-perturbative Gelis, Lappi, McLerran 0905.3234 13

  14. Description of Multiplicity distribution/ high multiplicity events IP-Glasma model : combines CGC framework & different sources of initial state fluctuations 1. Collision geometry and impact parameter 2. Color charge 3. Rare Fock-Space configurations 14

  15. (I) Fluctuation of collision geometry • Collision geometry is not calculable from first principle • Eikonal model with thickness profile from HERA data Proton profile Schenke, Tribedy, Venugopalan 1311.3636 ✓ � s ⊥ 2 1 ◆ T p ( s ⊥ ) = exp Impact parameter distribution 2 π B G 2 B G Z 1 � e − σ gg N 2 g T pp ( b ) Overlap function dP d 2 b ( b ) = g T pp ( b ) ⌘ , ⇣ Z 1 � e − σ gg N 2 R d 2 b d 2 s ⊥ T A p ( s ⊥ ) T B T pp ( b ) = p ( s ⊥ � b ⊥ ) . Making Nucleus out of proton scattering A p S i Y S p S A dip ( r ⊥ , x , b ⊥ ) = dip ( r ⊥ , x , b ⊥ ) i =0 ) Nuclear saturation scale : Q 2 sA ⇠ A 1 / 3 Q 2 sp color charge distribution in nucleus 15

  16. (II) Fluctuation of color charge For a given geometry fluctuations of color charge —> Negative Binomial distribution at each impact parameter 10 1 IP-Glasma CMS p+p 7 TeV 0<b<0.5 fm 10 0 0.5<b<1.0 fm p+p 7 TeV, = 0.48 fm IP-Glasma τ 3 P(N ch / 〈 N ch 〉 ) 10 1.0<b<1.5 fm 1.5<b<2.0 fm 10 -1 Entries Entries Entries 0 0 2 10 10 -2 10 -3 10 10 -4 0 2 4 6 8 10 N ch / 〈 N ch 〉 0 5 10 15 20 dN /dy g Convolution of many NBDs However the distribution is not wide enough to describe data Some sources of fluctuation missing 16

  17. (III) Intrinsic fluctuations of saturation scale Input to CGC framework —> dipole cross section e+p/A Color dipole picture : distribution of partons —> dist. of color dipoles Iancu, Mueller, Munier z * γ (hep-ph/0410018) T T T T T T T T r r r r q i i i i 1 1 1 1 r 2 2 2 2 Golec-Biernat, Wustho ff α α α α q hep-ph/9807513 s 1-z dipole-probe r r r r 2 2 2 2 2 2 2 2 log(r /r ) log(r /r ) log(r /r ) log(r /r ) i i i i 0 0 0 0 target saturation saturation saturation saturation 2 2 2 2 α α α α 2 2 2 2 2 2 2 2 log(r /r ) log(r /r ) log(r /r ) log(r /r ) 0 0 0 0 dipoles dipoles dipoles dipoles With evolution of rapidity each dipole split with probability ~ α s dY —> dipole splitting is however stochastic Stochastic dipole splitting —> not present in BK/JIMWLK —>beyond CGC 17

  18. Intrinsic fluctuations of saturation momentum of a proton/nuclei Dipole amplitude Saturation scale 10 1 1 σ =0.4 Y=8 10 0 σ =0.5 Y=0 0.8 P(Q S / 〈 Q S 〉 ) 10 -1 0.6 T(r,Y) 10 -2 0.4 10 -3 0.2 10 -4 0 0 0.5 1 1.5 2 2.5 3 0.1 1 10 2 /r 2 ) Q S / 〈 Q S 〉 log(r 0 Marquet, Soyez, Xiao hep-ph/0606233 Stochastic splitting of dipole leads to a distribution of Qs � ln 2 ( Q 2 S ( s ⊥ ) / h Q 2 ✓ S ( s ⊥ ) i ) ◆ 1 P (ln( Q 2 S / h Q 2 σ 2 ( Y ) = σ 2 0 ( Y 0 ) + σ 2 S i )) = p exp 1 ( Y � Y 0 ) , 2 σ 2 2 πσ 18

  19. Distribution of multiplicity McLerran, Tribedy 1508.03292 pp@LHC pp@RHIC 10 1 10 1 UA5 p+p 200 GeV CMS p+p 7 TeV 10 0 10 0 IP-Glasma σ =0.4 IP-Glasma σ =0 P(N ch / 〈 N ch 〉 ) P(N ch / 〈 N ch 〉 ) IP-Glasma σ =0.5 10 -1 10 -1 10 -2 10 -2 10 -3 10 -3 10 -4 10 -4 0 2 4 6 8 10 0 2 4 6 8 10 N ch / 〈 N ch 〉 N ch / 〈 N ch 〉 Origin of High multiplicity events (Tail of distributions) High multiplicity events —> rare configuration of high color charge density (1/g 2 ) 19

  20. Azimuthal Correlations in CGC • Intrinsic momentum space correlation from initial state ~ E • Originate probe scattering ∼ Q − 1 s off a color domain • Suppressed by number of Dumitru, Dusling, Gelis, Jalilian-Marian, color sources/domains . Lappi, Venugopalan 1009.5295 Kovner, Lublinsky 1012.3398 Dusling, Venugopalan 1201.2658 Kovchegov, Wertepny 1212.1195 Dumitru, Giannini 1406.5781 Lappi, Schenke, Schlichting, Venugopalan 1509.03499 Very distinct from Hydrodynamic flow (driven by geometry ) 20

Recommend


More recommend