modeling of modeling of hybrid systems hybrid systems
play

MODELING OF MODELING OF HYBRID SYSTEMS HYBRID SYSTEMS C. G. - PowerPoint PPT Presentation

MODELING OF MODELING OF HYBRID SYSTEMS HYBRID SYSTEMS C. G. Cassandras C. G. Cassandras Dept. of Manufacturing Engineering and Center for Information and Systems Engineering (CISE) Boston University cgc@bu.edu http://vita.bu.edu/cgc CODES


  1. MODELING OF MODELING OF HYBRID SYSTEMS HYBRID SYSTEMS C. G. Cassandras C. G. Cassandras Dept. of Manufacturing Engineering and Center for Information and Systems Engineering (CISE) Boston University cgc@bu.edu http://vita.bu.edu/cgc CODES Lab. - Boston University Christos G. Cassandras

  2. OUTLINE � TIME-DRIVEN vs EVENT-DRIVEN SYSTEMS � DES : Automata, Petri Nets, Max-Plus Algebra � DISCRETE EVENT SIMULATION → HYBRID SYSTEM SIMULATION � HYBRID SYSTEMS : Hybrid Automata, MLD Systems � MODELS FOR SWITCH TIMING CONTROL Christos G. Cassandras CODES Lab. - Boston University

  3. LESS COMPLEX MORE COMPLEX TIME-DRIVEN SYSTEM HYBRID SYSTEM EVENT-DRIVEN SYSTEM Christos G. Cassandras CODES Lab. - Boston University

  4. TIME-DRIVEN vs EVENT-DRIVEN SYSTEMS STATES STATE SPACE: TIME -DRIVEN x ( t ) X = ℜ SYSTEM DYNAMICS: ( ) = x f x t , & t TIME STATES STATE SPACE: { } EVENT -DRIVEN = X s s s s , , , s 4 1 2 3 4 SYSTEM s 3 x ( t ) s 2 DYNAMICS: ( ) ' = x f x , e s 1 t TIME t 1 t 2 t 3 t 4 t 5 EVENTS e 1 e 2 e 3 e 4 e 5 Christos G. Cassandras CODES Lab. - Boston University

  5. AUTOMATA AUTOMATON : ( E , X , Γ , f , x 0 ) Ε : Event Set X : State Space Γ ( x ) : Set of feasible or enabled events at state x × → f : State Transition Function f : X E X ( ) (undefined for events ) ∉ Γ e x 0 ∈ x X x 0 : Initial State, { } { } e e , , K x , x , K 1 2 1 2 ( ) = f x e , x ' Christos G. Cassandras CODES Lab. - Boston University

  6. TIMED AUTOMATON Add a Clock Structure V to the automaton: ( E , X , Γ , f , x 0 , V ) where: { } = ∈ V v : i E i { } = and v i is a Clock or Lifetime sequence : v v , v , K i i 1 i 2 one for each event i { } v 1 x , x , K 1 2 ( ) = … f x e , ' x ' v N NEXT EVENT Need an internal mechanism to determine Need an internal mechanism to determine NEXT EVENT e´ and hence NEXT EVENT e´ and hence ( ) = x ' f x e , ' NEXT STATE NEXT STATE CODES Lab. - Boston University Christos G. Cassandras

  7. HOW THE TIMED AUTOMATON WORKS... � CURRENT STATE x ∈ X with feasible event set Γ ( x ) x ∈ X with feasible event set Γ ( x ) � CURRENT EVENT e that caused transition into x e that caused transition into x � CURRENT EVENT TIME t associated with e t associated with e Associate a Associate a CLOCK VALUE / RESIDUAL LIFETIME y i CLOCK VALUE / RESIDUAL LIFETIME y i ( ) with each feasible event ∈ Γ with each feasible event i x CODES Lab. - Boston University Christos G. Cassandras

  8. HOW THE TIMED AUTOMATON WORKS... CONTINUED � NEXT/TRIGGERING EVENT e' : ( ) { } = e ' arg min y i ∈ Γ i x � NEXT EVENT TIME t' : = + t ' t y * ( ) { } = where: * y min y i ∈ Γ i x � NEXT STATE x' : ( ) = x ' f x e , ' CODES Lab. - Boston University Christos G. Cassandras

  9. HOW THE TIMED AUTOMATON WORKS... CONTINUED ′ Determine new CLOCK VALUES y i Determine new CLOCK VALUES for every event ( ) for every event ∈ Γ i x ( ) ( ) ′ ′  − ∈ Γ ∈ Γ ≠ y y * i x , i x , i e i  ( ) { ( ) } ′ ′ ′ = ∈ − − Γ Γ y v i x x e  i ij  0 otherwise  EVENT CLOCKS ARE STATE VARIABLES = where : v new lifetime for event i ij ( ) { } v 1 = = x ' f x , e ' , e ' arg min { y } x , x , K i 1 2 … ∈ Γ i ( x ) ( ) v N y = ' g y , x , V CODES Lab. - Boston University Christos G. Cassandras

  10. TIMED AUTOMATON - AN EXAMPLE SERVER QUEUE Arrival Departure Events Events { } ( ) { } = Γ = > x a , d , for all x 0 E a , d { } ( ) { } Γ = = 0 a X 0 , 1 , 2 , K + ′ =  x 1 e a ( ) ′ =  f x e , − ′ = > x 1 e d , x 0  { } { } = = Given input : v v , v , , v v , v , K K a a 1 a 2 d d 1 d 2 CODES Lab. - Boston University Christos G. Cassandras

  11. TIMED AUTOMATON - A TYPICAL SAMPLE PATH CONTINUED e 1 = a e 2 = a e 3 = a e 4 = d x 0 = 0 x 0 = 1 x 0 = 2 x 0 = 3 x 0 = 2 t 0 t 1 t 2 t 3 t 4 a a d a d a d CODES Lab. - Boston University Christos G. Cassandras

  12. STOCHASTIC TIMED AUTOMATON � Same idea with the Clock Structure consisting of Stochastic Processes � Associate with each event i a Lifetime Distribution based on which v i is generated Generalized Semi-Markov Process (GSMP) In a simulator, v i is generated through a In a simulator, v i is generated through a pseudorandom number generator pseudorandom number generator CODES Lab. - Boston University Christos G. Cassandras

  13. DISCRETE EVENT SIMULATION …is simply a computer-based implementation of the DES sample path generation mechanism described so far INITIALIZE INITIALIZE STATE STATE TIME TIME x t x t SCHEDULED x ' t ' EVENT LIST UPDATE TIME UPDATE STATE e 1 t 1 UPDATE TIME UPDATE STATE t' = t 1 x' = f ( x,e 1 ) t' = t 1 x' = f ( x,e 1 ) e 2 t 2 ... x ' t ' DELETE INFEASIBLE DELETE INFEASIBLE ADD NEW FEASIBLE ( e k , t k ) ADD NEW FEASIBLE ( e k , t k ) ( e k , t' + v k ) ( e k , t' + v k ) AND RE-ORDER AND RE-ORDER RANDOM VARIATE RANDOM VARIATE GENERATOR new event lifetimes v k GENERATOR Christos G. Cassandras CODES Lab. - Boston University

  14. HYBRID SYSTEM SIMULATION Timing of NEW FEASIBLE EVENTS is now determined by time-driven dynamics INITIALIZE INITIALIZE STATE STATE TIME TIME x t x t SCHEDULED x ' t ' EVENT LIST UPDATE TIME UPDATE STATE e 1 t 1 UPDATE TIME UPDATE STATE t' = t 1 x' = f ( x,e 1 ) t' = t 1 x' = f ( x,e 1 ) e 2 t 2 ... x ' t ' DELETE INFEASIBLE DELETE INFEASIBLE ADD NEW FEASIBLE ( e k , t k ) ADD NEW FEASIBLE ( e k , t k ) ( e k , t' + v k ) Time-driven dynamics ( e k , t' + v k ) Time-driven dynamics AND RE-ORDER AND RE-ORDER RANDOM VARIATE determine t'+y k RANDOM VARIATE determine t'+y k GENERATOR new event lifetimes v k GENERATOR Christos G. Cassandras CODES Lab. - Boston University

  15. PETRI NETS Proceed by example and contrast to Timed Automaton model... SERVER QUEUE Arrival Departure Events Events EVENTS: - Arrivals ( a ) - Departures ( d ) STATES: Number of customers in queue or in service, {0,1,2,…} Christos G. Cassandras CODES Lab. - Boston University

  16. PETRI NETS CONTINUED TRANSITIONS (EVENTS): a v a - a : Customer arrives I Q - s : Service starts - d : Customer departs s PLACES (CONDITIONS): B - Q : Queue not empty - I : Server idle v d d - B : Server busy TRANSITION TIMING: Transition fires - a → v a = { v a ,1 , v a ,2 , … } after - s → specified delay v s = 0 (no delay) - d → v d = { v d ,1 , v d ,2 , … } Christos G. Cassandras CODES Lab. - Boston University

  17. PETRI NETS CONTINUED a v a a k : k th arrival time I Q s k : k th service start time d k : k th departure time s π Q,k : k th time Q gets token B π I,k : k th time I gets token π B,k : k th time B gets token v d d = + π = a a v a − 1 k k a k , Q k , k [ ] π = d = π π s max , − 1 I k , k k Q k , I k , π = s = π + d v B k , k k B k , d k . [ ] = + = d max a , d v , k 12 , K − k k k 1 d k . Christos G. Cassandras CODES Lab. - Boston University

  18. MAX-PLUS ALGEBRA [ ] ⊕ = ADDITION: a b m ax a b , MULTIPLICATION: ⊗ = + a b a b • From Petri net model: = + = a a v a 0 − k k 1 a k , 0 [ ] = + + = d max a v , d v d 0 − − k k 1 a k , k 1 d k . 0 • Fix: = 1 2 K v = C , v = C f o r a l l k , , a , k a d , k d ( ) ( ) • Equations become: + = ⊗ ⊕ ⊗ − − = −∞ a a C d L L k 1 k a k- 1 ( ) ( ) = ⊗ ⊕ ⊗ d a C d C k k d k- 1 d Christos G. Cassandras CODES Lab. - Boston University

  19. MAX-PLUS ALGEBRA CONTINUED • In matrix form: −  a   C L   a  + k 1 a k  =      d C C d       − k d d k 1 • Define: −     a C L + 1 k a = = x , A     k d C C     k d d • Get a “ linear ” system - in the max-plus sense:  C  a = = x A x , x   + k 1 k 0 0   Christos G. Cassandras CODES Lab. - Boston University

  20. REFERENCES ON DES MODELING Cassandras and Lafortune, Introduction to Discrete Event Systems , Kluwer, 1999 David and Alla, Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems , Prentice-Hall, 1992. Peterson, Petri Net Theory and the Modeling of Systems , Prentice Hall, 1981 Glasserman and Yao, Monotone Structure in Discrete-Event Systems , Wiley, 1994 Baccelli, Cohen, Olsder, and Quadrat, Synchronization and Linearity: An Algebra for Discrete Event Systems , Wiley, 1992 Christos G. Cassandras CODES Lab. - Boston University

  21. HYBRID AUTOMATA [ Branicky et al., 1998 ] [ Branicky et al., 1998 ] = γ Σ q : z ( z , u , t ) & G q q q q q F q A q C p A p C q AUTONOMOUS JUMP SET CONTROLLED JUMP SET System must jump with System may jump with × → G : A V S → S F q C : 2 q q q q H = ( Q , Σ , A , G , V , C , F ) Discrete state indices, q ∈ Q Christos G. Cassandras CODES Lab. - Boston University

Recommend


More recommend