modular synthetic receptor system interfaced with nano
play

Modular Synthetic Receptor System Interfaced with Nano Breadboard - PowerPoint PPT Presentation

Modular Synthetic Receptor System Interfaced with Nano Breadboard Synthetic receptor scheme Synthetic receptor model Active state Inactive state, protein split Principle of a construction kit FluA-Anticalin scFv-Anti-NIP Transmembraneregion


  1. Modular Synthetic Receptor System Interfaced with Nano Breadboard

  2. Synthetic receptor scheme

  3. Synthetic receptor model Active state Inactive state, protein split

  4. Principle of a construction kit FluA-Anticalin scFv-Anti-NIP Transmembraneregion Transmembraneregion EGF-Receptor B cell receptor Split β -Lactamase Split Cerulean Split Venus CFP YFP

  5. Cloning of our construction kit Signal- Lipocalin-FluA- GGGS- Transmembrane- Split- peptide Anticalin Linker Split-Venus-cYFP region EGFR Linker Transmembrane- Antibody-anti-NIP Split-Cerulean-cCFP region BCR Split- β -Lactamase 1 Split-Luciferase 1 Submitted: 13 basic and 28 Split-Venus-nYFP composite parts in E. coli vectors. Split-Cerulean-nCFP Split- β -Lactamase 2 Further 16 parts were cloned in an eukaryotic transfection Split-Luciferase 2 vector.

  6. Using BioBrick 3.0 EcoRI NotI XbaI NgoMIV AgeI SpeI NotI PstI | | | | | | | | GAATTCgcggccgctTCTAG Atg GCCGGCnnnnnnACCGGTtaatACTAGTagcggccgCTGCAG 1 ---------+---------+---------+---------+---------+---------+----- 65 CTTAAGcgccggcgaAGATCTacCGGCCGnnnnnnTGGCCAattaTGATCAtcgccggcGACGTC c I R G R F * M A G ? ? T G * Y * * R P L Q - NgoMIV | CCGGC..SEQUENCE.. ----- GGCCG..SEQUENCE.. G AgeI | . ..SEQUENCE..ACCGG ----- ..SEQUENCE..TGGCC T ..SEQUENCE..ACCGGC..SEQUENCE.. ------ ..SEQUENCE..TGGCCG..SEQUENCE.. T G � short flexible linker, no stop codons !!!

  7. Expression in mammalian cells XbaI CMV- promotor PstI

  8. Modeling: Receptor dimerization Basic receptor dimerization: Free receptor and ligand Receptor ligand binding Receptor dimerization Receptor activation Internalization

  9. Modeling: Receptor activity Receptor activity: Model characteristics: 5 ODEs, 12 parameters

  10. Modeling: Two distinct receptors Dimerization of two distinct synthetic receptors: � R 1 and R 1 : Dimerization, but no split protein activity � Dimerization, but no split protein activity R 2 and R 2 : � Dimerization R 1 and R 2 : � split protein activation

  11. Modeling: Ligand dependency Protein activity dependent on ligand amount: Model characteristics: R 2 LLR 2 R 1 LLR 1 R 2 R 1 R 1 LL LL R 2 R 1 R 2 R 1 LLR 2 R 1 LL R 2 LL A 9 ODEs 25 parameters ‐ Higher activity for higher ligand concentrations until certain ligand level ‐ Decrease in activity for high amounts of ligands

  12. Results: Programmable Input

  13. DNA Origami DNA-Origami

  14. DNA Origami Long (7526 nt) ssDNA Folded origami structures T ↓ 216 staple oligonucleotides 6 nm grid P. Rothemund, 2006

  15. DNA Origami: Forcing a ssDNA in Shape by Staple Oligonucleotides M13 ssDNA, length 7526 nt This origami yields a square width: 103.7 nm , 27 turns, (288 nt) height: approx. 60 nm, 24 helices

  16. DNA Origami

  17. DNA Origami 5‘ linked nitro iodo phenol 3‘ linked fluorescein mid point linked Alexa 488

  18. Results: Cellular Readout

  19. Membrane Integration in 293T Cells YFP: cytosolic FluA-Anticalin – EGFR transmembranregion – β -Lactamase1 – YFP

  20. Activation of Split-CFP Transfected 293T cells without stimulation Transfected 293T cells with fluorescein-oligo stimulation

  21. β -Lactamase Activity Test (CCF4-AM) Substrate + ß-Lactamase Product Product Emission at 450 nm Substrate

  22. Activation of Split Lactamase by Origami Negative Control: Intensity 1.0 0.8 0.6 0.4 0.2 420 440 460 480 500 520 540 Emission wavelength [nm] Sample: Intensity 1.0 0.8 0.6 0.4 0.2 420 440 460 480 500 520 540 Emission wavelength [nm]

  23. Summary & Outlook • Devised modified DNA origami as input device • Verified DNA origami formation by AFM • Optimized buffers for origami stability and cell viability • Designed and cloned a modular synthetic receptor system • Demonstrated synthetic receptor membrane localization • Demonstrated “anticalin-split CFP receptor” activation • Demonstrated “anticalin-split lactamase receptor” activation • We showed that spatially arranged green fluorescent dyes trigger a blue fluorescent output in a human cell line. • Technology provides the foundation for universal extracellular cell programming.

  24. Acknowledgement Instructors Dr. Kristian Müller (Biology) Dr. Katja Arndt (Biology, FRIAS, Bioss) PD Wolfgang Schamel (MPI for Immunobiology) Support & Instrumentation Janina Speck Kilian Bartholomé Dr. Christian Fleck (Physik) PD Svetlana Santer(IMTEK) Dr. Roland Nitschke (ZBSA) Prof. Ralf Baumeister (Biology, ZBSA, FRIAS) Prof. Michael Reth (Biology) Prof. Ralf Reski (Biology) Prof. Jan Korvink (IMTEK, FRIAS) Collaboration ESBS Strasbourg iGEM team

Recommend


More recommend