2008.3.5- 2008.3.5 -7 JST 7 JST- -DGF DGF Nano Nano Electronics Electronics Seminor Seminor at at Achen Achen National Institute for Material Science Landscape of materials design Landscape of materials design for future nano nano electronics electronics for future And And high- -throughput materials throughput materials high exploration exploration Toyohiro Chikyow Chikyow Toyohiro Advanced Electric Materials Center, Advanced Electric Materials Center, National Institute for Materials Science National Institute for Materials Science
1 , N.Umezawa 1 , M.Yoshitake 1 , T.Nagata 1 , N.Umezawa 1 , M.Yoshitake 1 , T.Nagata National Institute for Materials Science (NIMS) National Institute for Materials Science (NIMS) 3 , T.Yamada 3 , K.Ohmori, 3 , T.Yamada 3 , K.Ohmori, Waseda University University Waseda 4 , H. Watanabe 4 , H. Watanabe Osaka University, Osaka University, 5 K.Shiraiishi 5 K.Shiraiishi 5 Tsukuba University, 5 Tsukuba University, H. Koinuma 1, 2 1, 2 H. Koinuma Japan Science and Technology Agency (JST), Japan Science and Technology Agency (JST),
Contents Contents 1)New Materials and High Throughput New Materials and High Throughput 1) Materials Exploration Materials Exploration 2)Example 1: Gate oxide research Example 1: Gate oxide research 2) 3)Example 2 :Metal gate research Example 2 :Metal gate research 3) 4)Materials informatics Materials informatics 4) 5)Summary Summary 5)
Beyond CMOS new logic new memory (Spintronocs,quantum High speed, power saving and functionality High speed, power saving and functionality New materials exploration by combinatorial system) methodology i S c ) nanosheet) i n , nanosheet n -Moore Moore Ultimate CMOS Ultimate CMOS a o Aiming at ultra small, g y r o t i super power saving, high l a r o nanowire, n Than- s (nanowire -Than o efficiency multi functional n i t e c s n device u , e ( More- f More c w i v e e N d New channel CMOS l a c (Ge, III-V materials ) i t ) p T O G S , Nano characterization n i F ( S O M C Work function measurement D 3 More-Moore Surface analysis k -k gate,Low- metal gate,Low Present CMOS 、 metal k 、 -k high- high Nano Electronics Lithography Silicon technology Nanotechnology Development of ultra small, super power saving, high efficiency multi function by integration with Si device technology and nano technology
Research Trend in Si Si nano nano device device Research Trend in High speed operation 、 、 High packing 、 、 multi High denisty denisty packing multi – –function device function device High speed operation New Materials New Materials based based Si Si device device ( hp32 hp32- -22 nm node ) 22 nm node ) ( Materials Materials Exploration for Nano Exploration for Nano device device High- -k ,metal gate, k ,metal gate, High Nano wires ( wires ( Si Si CNT or others CNT or others Nano interconnection ets ets interconnection Present Si Si nano nano device device Present Postscaling generation Postscaling generation ・ Mixning ( hp65nm node is completed) hp65nm node is completed) ・ ( Mixning technology technology of top down and bottom up of top down and bottom up ・ 3D ・ 3D nano nano structure structure ・ Variety of ・ Variety of nano nano interface interface 3D nano nano structures structures 3D 30nm , SiO 2 2 have been the major materials Si,Al, SiO have been the major materials Si,Al Prof.Endo Tohoku Univ. Prof.Endo Tohoku Univ.
New Materials in Future ULSI New Materials in Future ULSI National Institute for Material Science HfSiON HfSiON TiN,TaN, , NiSi NiSi TiN,TaN HfLaON HfLaON Ru,W,Mo Ru,W,Mo LaAlO 3 LaAlO 3 TaC TaC La 2 O 3, La 2 O SiO2 3, SiO2 Poly Si Si Poly SiO 2 SiO 2 SiGe, SiGe , Ge Ge, , GaAs GaAs Graphen, Graphen , Si Si CNT, Si CNT, Si wire wire +Strain +Strain 1) Collaboration 2) HT Experimentation 2) HT Experimentation
High-Throughput synthesis : imitation to innovation Former combi combi system for inorganic materials system for inorganic materials Former Combinatorial Chemistry Combinatorial Chemistry Innovative thin film technology Innovative thin film technology “Combinatorial solid Combinatorial solid- -state chemistry of inorganic materials state chemistry of inorganic materials” ” “ Hideomi Koinuma Koinuma and Ichiro Takeuchi, Nature Materials 3, 429 and Ichiro Takeuchi, Nature Materials 3, 429 - - 438 (2004) 438 (2004) Hideomi
What is combinatorial materials exploration? 2 2 (4) 2 4 (16) 2 6 (64) 2 8 (256) 2 10 (1024) Discovery of new fluorescent materials Jingsong Wang et al Science 1998 Ambient light UV irradiation March 13; 279: 1712-1714
Combinatorial automatic ternary and binary Combinatorial automatic ternary and binary Composition spread synthesis system Composition spread synthesis system with Moving Mask System with Moving Mask System Combinatorial Materials Exploration and Technology
Schematics of binary composition spread film Substrate Moving Mask 1) Deposition of Material A 2) Deposition of Materials B 3) Continuous composition spread in 1 atomic layer 0.2 nm 4) Complete continuous composition spread film ~6 mm
Concept of ternary materials combinatorial synthesis Concept of ternary materials combinatorial synthesis Stepping Motor 1 1 Stepping Motor Sample Rotation System Sample Rotation System Sample Heating System Sample Heating System Heater Box Heater Box Sample Holder Sample Holder Stepping Motor 2 2 Stepping Motor Mask Moving System Mask Moving System KrF Eximer KrF Eximer Control Box Control Box Laser Laser Control Board Control Board Stepping Motor 3 3 Stepping Motor Targets Exchange System Targets Exchange System
Combinatorial deposition systems (@NIMS) Ion sputtering (metal gate materials) Ar + ion: 5 keV I ion ~ 40 μ A Sample Pulsed laser deposition (oxides, high-k films) Moving mask Ion beam Targets
New materials discovery loop New materials discovery loop A B X ① Predict ① Predict ③ Combi synthesis ③ ② Experiment design Combi synthesis ② Experiment design ( Calculation, Data base ) ( Calculation, Data base ) Oxide Oxide Magnetic Magnetic Sencor Sencor materials materials materials materials Materials for Materials for ④ Date handling in ④ High throughput ④ thermometer thermometer ④ Date handling in High throughput ⑤ Starting another PJ ⑤ Characterization Starting another PJ informatics Characterization informatics
Example 1 :Gate oxide Example 1 :Gate oxide Requirement Requirement 1) Higher dielectric constant 1) Higher dielectric constant 2)Amorphous structure Amorphous structure 2) Defect density in Oxide (1) Ionicity : Y 2 O 3 < HfO 2 、 MgO< TiO 2 , Al 2 O 3 < ZnO<SiO 2 (2) Valency : Y:3+, Hf:4+, Al:3+ Zn :2+, : simple ; Ti 3+, 4+ : mixed
Sun, Zachariasen Glass empirical rule Network former ( Can be amorphous for itself ) Intermediate oxide (Can be amorphous with Network forming oxide and modifier ) Additional oxide ( can be amorphous with network forming oxide ) HfO 2 Ternary alloying is inevitable for HfO 2 to be amorphous Ternary alloying is inevitable for HfO 2 to be amorphous Y 2 O 3 Al 2 O 3
Combinatorial X-ray Diffraction System HfO 2 (200)(020) monoclinic (111) (002) HfO 2 _ HfO 2 :Y 2 O 3 Y 2 O 3 Al 2 O 3 ) 2 2 2 ( r o ) 1 Hf x Y (1-x) O (3+x)/2 1 1 ( cubic ( Developed by CombiXRD CombiXRD Dr.Watanabe (Bruker: (Bruker: Dr.Fujimoto , D8 Discovery D8 Discovery AML-NIMS) (222) System ) System ) Y 2 O 3 cubic
HfO 2 HfO 2 -Y 2 O 3 -Al 2 O 3 system (1) Dielectric constant mapping Y 2 O 3 Al 2 O 3 T sub = 300 ℃ , laser power = 3J/cm 2 , P O2 = 1e -6 Torr, post-annealed at 700 ℃ (2) Crystal structure mapping high- ε & amorphous region HfO 2 (monoclinic) Hf 2x Y (2-2x) O (3+x) (cubic)
Micro Structure Characterization for Combinatorial Samples Micro Sampling Method Hitachi FB-2000 JEOL 4000EX (NIMS) +Micro sampling Unit H-9000NAR (T.I.T)
Characterizations of the combinatorial specimens HfO 2 Silicate FFT result Si-sub. HfO 2 Dielectric Dielectric Mapping Mapping HfO 2 -Al 2 O 3 Silicate by C- -V, I V, I- -V V by C FFT result Si-sub . Y 2 O 3 Al 2 O 3 HfO 2 -Y 2 O 3 -Al 2 O 3 Structure mapping Structure mapping Silicate by Combinatorial XRD by Combinatorial XRD FFT result Si-sub. Interface structure mapping by TEM Interface structure mapping by TEM
Example 2 : Metal Gate Example 2 : Metal Gate Requirement Requirement 1) Work function tuning 1) Work function tuning 2)Interface control Interface control 2) 3) Amorphous structure Amorphous structure 3)
Challenge of metal gate issues in Challenge of metal gate issues in National Institute for Material Science National Institute for Material Science hp 32 32- -22nm node 22nm node hp Poly metal gate Poly metal gate 16- 16 -10nm 10nm 1) interface roughness interface roughness 1) 2) Work function Work function 2) fractuation fractuation 3) Edge roughness 3) Edge roughness Metal glass gate Metal glass gate
Recommend
More recommend