means adding and deleting the number of hv and ro on the
play

MEANS : adding and deleting the number of HV and RO on the Panel. - PowerPoint PPT Presentation

GOAL : to determine the extent to which each discharge on a pixel affects neighboring pixels MEANS : adding and deleting the number of HV and RO on the Panel. Signal recording and analysis of data by ROOT. mixing gas = 90% Ar10%CF Panel =


  1. GOAL : to determine the extent to which each discharge on a pixel affects neighboring pixels MEANS : adding and deleting the number of HV and RO on the Panel. Signal recording and analysis of data by ROOT.

  2. mixing gas = 90% Ar10%CF Panel = 64HV-128RO oscilloscope = DRS4-V1 Source = ruthenium 106

  3.  selection of the number of HV by adding or removing resistors 100 MOhm  selection of the number of RO: hiding the other with tape  setting up the source above the pixels  Applying voltage between 750-800V  signal recovery by DRS4 for approximately 1000 events for 1 to 4 RO. But trigger just on 1RO  plotting pulse high for each voltage and fitting by gaussian  Plotting the means of Gaussian depending on the voltage

  4. 1HV 300 300 Linear (1HV-1RO ) Linear (1HV-2RO) 280 280 260 260 240 240 220 220 mean mean y = 0.0885x + 166.66 200 200 180 180 y = 0.2025x + 38.864 160 160 y = 0,3927x - 180,48 140 140 120 120 100 100 750 760 770 780 790 800 750 760 770 780 790 800 voltage voltage 300 300 280 Linear (1HV-3RO ) Linear (1HV-4RO) 280 260 260 240 240 220 y = 0.4605x - 121.61 mean 220 mean 200 200 y = 0.4853x - 138.9 180 180 160 y = 0.5469x - 300.8 160 140 140 120 120 100 100 750 760 770 780 790 800 voltage 750 760 770 780 790 800 voltage

  5. 1HV 1RO 1HV 1RO Distribution of the pulse height for 750 V Distribution of the pulse height for 800V # # mV mV

  6. 1HV 2RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775V # # mV mV Distribution of the pulse height for 800 V # mV

  7. 2HV 300 Linear (2HV-2RO) Linear (2HV-1RO ) 280 300 260 280 y = 0.2564x + 45.9 y = 0.3651x - 27.709 240 260 220 240 mean 200 220 mean y = 0.3684x - 83.727 180 200 180 y = 0.3738x - 146.63 160 160 140 140 120 y = 0.3871x - 166.17 120 100 100 750 760 770 780 790 800 750 760 770 780 790 800 voltage voltage Linear (2HV-3RO ) 300 y = 0.6969x - 270.22 Linear (2HV-4RO) 300 280 280 260 260 240 240 y = 1.2583x - 757.97 y = -0.0409x + 293.72 220 220 mean mean 200 200 180 180 y = 0,436x - 195,95 160 160 y = -0.38x + 481.2 140 140 120 120 y = 0.4604x - 232.68 100 100 750 760 770 780 790 800 750 760 770 780 790 800 voltage voltage

  8. 2HV 1RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775 V # # mV mV 750 V 775 V Distribution of the pulse height for 800 V # 800 V mV

  9. 2HV 2RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775 V # # mV mV Distribution of the pulse height for 800 V # mV

  10. 2HV 3RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775 V # # mV mV 750 V 775V Distribution of the pulse height for 800 V # 800 V mV

  11. 2HV 4RO Distribution of the pulse height for 750 V Distribution of the pulse height for 800 V # # mV mV 750 V 800 V

  12. 3HV Linear (3HV-1RO) Linear (3HV-2RO) y = 0.4875x - 100.62 300 300 y = 0.2244x + 95.491 280 280 260 260 y = 0.4804x - 112.64 240 240 220 220 mean mean y = 0.4504x - 123.91 200 y = 0.2793x - 14.209 200 180 180 160 y = 0.326x - 109.91 160 140 140 y = 0.1203x + 41.921 120 120 100 100 750 760 770 780 790 800 750 760 770 780 790 800 voltage voltage Linear (3HV-4RO) Linear (3HV-3RO) 300 300 280 280 y = 0.461x - 99.892 y = 0.3651x - 6.6545 260 260 240 240 y = 0.3002x + 16.905 220 220 y = 0.6682x - 282.53 mean mean 200 200 180 180 160 y = 0.3853x - 163.97 160 y = 0.4218x - 196.66 140 140 120 120 100 100 750 760 770 780 790 800 750 760 770 780 790 800 voltage voltage

  13. 3HV -1RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775 V # # 3 1 mV mV 750 V 775 V Distribution of the pulse height for 800 V # 800 V mV

  14. 3HV -4RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775 V # # mV mV 750 V 775 V Distribution of the pulse height for 800 V # 800 V mV

  15. 4HV Linear (4HV-1RO) Linear (4HV-2RO) 300 300 y = 0.2949x + 57.073 280 280 260 260 y = 0.1667x + 140.83 y = 0.3965x - 44.077 240 240 220 220 mean mean y = 0.1928x + 68.789 200 200 y = 0.2427x + 14.995 180 y = -0.94x + 917.9 180 160 160 140 140 y = 0.4033x - 167.39 y = 0.3589x - 130.17 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 Voltage Voltage Linear (4HV-4RO) 300 300 Linear (4HV-3RO) y = 0.1329x + 167.62 280 280 260 260 240 240 y = 0.2065x + 89.2 220 220 mean mean y = 0.994x - 549.66 200 200 180 180 y = 0.2036x - 30.246 160 160 y = 0.4131x - 157.21 140 140 120 120 y = 0.1267x + 44.932 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 Voltage Voltage

  16. 4HV -4RO Distribution of the pulse height for 750 V Distribution of the pulse height for 775 V # # mV mV 750 V 775 V Distribution of the pulse height for 800 V # 800 V mV

  17. Linear (2HV-1RO) Linear (1HV-1RO) 300 300 280 280 260 260 240 240 mean mean 220 220 200 200 180 180 160 160 140 140 120 120 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage FOR 1RO Linear (4HV-1RO) Linear (3HV-1RO) 300 300 280 280 260 260 240 240 mean mean 220 220 200 200 180 180 160 160 140 140 120 120 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage

  18. Linear (2HV-2RO) Linear (1HV-2RO ) 280 280 260 260 240 240 220 220 mean mean 200 200 180 180 160 160 140 140 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage FOR 2RO Linear (3HV-2RO) Linear (4HV-2RO) 280 280 260 260 240 240 220 220 mean mean 200 200 180 180 160 160 140 140 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage

  19. Linear (1HV-3RO) Linear (2HV-3RO) 300 300 280 280 260 260 240 240 220 220 mean mean 200 200 180 180 160 160 140 140 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage FOR 3RO Linear (3HV-3RO) Linear (4HV-3RO) 300 300 280 280 260 260 240 240 220 220 mean mean 200 200 180 180 160 160 140 140 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage

  20. Linear (1HV-4RO) Linear (2HV-4RO) 300 300 280 280 260 260 240 240 220 220 mean mean 200 200 180 180 160 160 140 140 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage FOR 4RO Linear (4HV-4RO) Linear (3HV-4RO) 300 300 280 280 260 260 240 240 220 220 mean mean 200 200 180 180 160 160 140 140 120 120 100 100 750 755 760 765 770 775 780 785 790 795 800 750 755 760 765 770 775 780 785 790 795 800 voltage voltage

  21.  there is a variation of the distributions depending on the voltage: some distributions appear others disappear.  the number of distributions is not proportional to the number of pixels (refer for 2HV-1RO)  for low voltage, the recording time of 1000 events is very long (about 30min), while for high voltage, the recording time is very short (about 1 min)  HV and RO on which the measurements were made ​ are not always the same, which might explain the different variations of distributions. And also the position of the radiation source.

  22. 1.4 1.2 1 0.8 Slope a 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pixels

  23. For 4 bins

  24. For 7 bins

  25. For 10 bins

  26. For 20 bins

  27.  Source ~ 3µCi  1 Ci = 3,7 . 10 pow(10) desintegrations per seconde A ~ 10 pow(5) desintegrations per seconde But only ~ 10% of particles pass through the panel 10 pow (4) particles

  28. rate of two particles in the same discharge Ƒ =ƒ1 * ƒ2 * Window / number of events ƒ1= 10 pow (4) ƒ2= 10 pow (4) ~ 0,01 Window = time of pulse = 100ns = 10 pow(-7) IMPOSSIBLE Events = 1000

Recommend


More recommend