CANDLES for the study for Double Beta Decay of 48 Ca UMEHARA Saori umehara@rcnp.osaka-u.ac.jp CANDLES collaboration Osaka University, University of Fukui, University of Tokushima, Hiroshima University, Saga University, Kyoto San-gyo University 48 Ca Enrichment Tokyo Institute of Technology, Sophia University
Outline Double beta decay of 48 Ca ELEGANT VI system (previous system) = CaF 2 (Eu) scintillators + CsI(Tl) scintillators system CANDLES System = CaF 2 (pure) scintillators + Liquid scintillator system CANDLES III system at Kamioka underground lab. Pre-measurement for performance test R&D Mass Spectrum of Calcium Summary 40 Ca 42 Ca 43 Ca 44 Ca 46 Ca 48 Ca × 10 × 0.1 × 0.1 × 0.1 × 0.001 × 0.1 UMEHARA Saori, 16 th Nov. 2011, DBD11
Double Beta Decay Neutrino-less double beta decay Double Beta Decay Neutrino-less double beta decay Very rare decay T 1/2 > (~10 25 years) nucleus If observed Neutrino → Majorana particle Lepton number violation Decay rate T 1/2 ∝ 1/m 2 We have studied double beta decay of 48 Ca UMEHARA Saori, 16 th Nov. 2011, DBD11
Double Beta Decay of 48 Ca Why 48 Ca? Higher Q -value(4.27MeV) . . . 76 Ge(2.0MeV), 100 Mo(3.0MeV), 130 Te(2.5MeV) → Low background because Q -value is higher than BG E max =2.6MeV( 208 Tl, -ray) 3.3MeV( 214 Bi, -ray) We have developed the detector system for no background measurement Double beta decay of 48 Ca by CaF 2 scintillators ELEGANT VI system Scale up CANDLES series
ELEGANT VI ELEGANT VI ELEctron Gamma-ray Neutrino Telescope Schematic drawing of ELEGANT VI CaF 2 (Eu) CaF 2 Scintillator (CaF 2 (Eu)) 23 Crystals(45 × 45 × 45cm 3 :290g) CaF 2 (pure) Source of Decay : 48 Ca CsI(Tl) (Q =4.27MeV) veto counters 46 CaF 2 (pure) 38 CsI(Tl) → 4 Active Shield Passive shields for -ray Cu : 5cm,Pb : 10cm for Neutron LiH LiH+Paraffin :15mm Cd sheet : 0.6mm Cu H 3 BO 3 loaded water Pb Air-tight Box UMEHARA Saori, 16 th Nov. 2011, DBD11
Result of ELEGANT VI Obtained Result Energy Spectra(Jan2003-) COUNTS(/40keV) Q of 48 Ca Run summary (Measurement for 4 years) 10 2 Date Number of Expected BG Live Time Event ( 212 Bi, 214 Bi, 208 Tl) kg ・ day 10 212 Bi (Sim) Jun1998- 0 1.30 1553 1 Jan2003- 0 0.27 3394 208 Tl (Sim) -1 10 -2 10 No events in 0 Energy Window 3000 3250 3500 3750 4000 4250 4500 4750 5000 Energy(keV) 0 Half-Life of 48 Ca : > 5.8 × 10 22 year ( 90 % C.L.) <m < (3.5-22) eV ・ 4 active shield is effective for background free measurement. ・ Expected backgrounds are 212 Bi and 208 Tl For higher sensitivity, we need a large amount of 48 Ca.
Design Concepts of CANDLES CANDLES CAlcium fluoride for studies of Neutrino and Dark matrters by Low Energy Spectrometer CaF 2 (pure) scintillator Long attenuation length (>10m@350nm) Double beta decay source 48 Ca (Q bb =4.27MeV) Liquid Scintillator (Veto Counter) Liquid scintillator 4 Active Shield Large photomultiplier tube Signals from both scintillators are detected simultaneously Active Shielding Technique CaF 2 (pure) Different time constants : ~ 1 sec Buffer Oil CaF 2 (pure) Liquid scintillator : a few 10 nsec UMEHARA Saori, 16 th Nov. 2011, DBD11 Large PMT
Active Shielding Technique Setup Concept of 4 Active Shield Liquid Scintillator Acrylic Case and Performance Test :20 × 20 × 20cm 3 PSD between CaF 2 5inch PMT and Liquid Scintillators CaF 2 (pure) Distribution of “charge ratio” :10 × 10 × 10cm 3 80nsec Ratio Partial/Full 1 2 0 Partial ADC Gate Energy 2400 ~ 2600keV Liq. Scintillator 4 µ sec Full ADC Gate γ -ray 0.8 Liquid Liquid Scintillator 0.6 Scintillator Event CaF 2 (pure) Clear Discrimination 0.4 β -ray CaF 2 (pure) Event 0.2 CaF 2 (pure) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 CaF 2 Energy(keV) Clear Discrimination between CaF 2 and Liquid Scintillators . . .Well Act as Veto Counter UMEHARA Saori, 16 th Nov. 2011, DBD11
CANDLES III at Kamioka Lab. CANDLES at Kamioka underground Lab. CANDLES III Kamioka Lab. Map 3m diameter × 4m height (water tank) KamLAND Lab D Super Kamiokande 4m 3m CANDLES CANDLES III
CANDLES III CANDLES at Kamioka underground laboratory CANDLES III CaF 2 scintillator (CaF 2 (pure)) 305 kg (96 modules × 3.2kg) ~ 1 sec Main detector CaF 2 Scintillators (305kg) Liquid scintillator (LS) 4 Active Shield Volume:2m 3 ~ a few ten nsec Liquid Scintillator Tank(2m 3 ) Large photomultiplier tube 13inch PMT × 48 20inch PMT × 14 for CANDLES III system ・ Characteristic FADC for CaF 2 (long) 13inch and 20inch and LS(short) signals PMTs ・ Selective trigger for CaF 2
FADC for CANDLES For CaF 2 and LS signals . . . And data suppression High sampling rate at the beginning, Low sampling at the ending Typical pulse shape of CaF 2 +LS Pulse Height 800 800 Pulse Height 500MHz at beginning 700 700 500MHz at beginning 600 600 ~16MHz at end 500 500 ~16MHz at end 400 400 300 300 200 200 100 100 0 0 -200 -100 0 100 200 300 400 -400 0 400 800 0 250 500 750 10001250150017502000 0 1000 2000 3000 4000 Time (nsec) Time (nsec) ~ 16MHz × 128 500MHz × 256 LS pulse CaF 2 pulse (Sum at FPGA) Clear Discrimination between CaF 2 and Liquid scintillators ・ Details of PSD will be presented in a poster session by G. Ito Data size is small. ・ 500MHz × 2048data → 500MHz × 256data + 16MHz × 128data
Selective Trigger with normal trigger Ratio Partial/Full 1 Selective trigger for CaF 2 0.8 0.6 by using “threshold for integrated signal” LS CaF 2 0.4 in poster session by M. Saka 0.2 0 500 1000 1500 2000 2500 3000 3500 4000 4500 CaF 2 Energy(keV) at 2600keV Event Distribution with Trigger for CaF 2 No LS Events 1 Ratio Threshold LS Region for integrated signal 80 0.8 well works. at 2600keV 800 Pulse Height 60 0.6 700 CaF 2 + LS 600 500 CaF 2 +LS 40 400 0.4 800 Pulse Height 300 700 200 600 100 500 20 0.2 0 0 250 500 750 1000 1250 1500 1750 2000 CaF 2 400 Time(2nsec) 300 CaF 2 Event 200 0 500 10001500200025003000350040004500 0 100 0 0 0 250 500 750 1000 1250 1500 1750 2000 Energy(keV) Time(2nsec) We obtained . . . ・ High efficiency for CaF 2 Scintillator, Low efficiency for LS
Position Reconstruction Position Reconstruction position(Y) 3 CaF 2 s Counts 225 for events with CaF 2 pulse shapes 200 175 for identification of CaF 2 position 150 125 100 75 position(X) 5 CaF 2 s 50 Counts 25 250 0 -500-400-300-200-100 0 100 200 300 400 500 Position Y 200 position(Z) 6 layers Counts 300 150 250 Lower Upper 200 100 150 50 100 50 0 -500-400-300-200-100 0 100 200 300 400 500 0 -500-400-300-200-100 0 100 200 300 400 500 Position X Position Z We can identify each CaF 2 position. in a poster session by K. Yasuda
Pre-measurement For performance test by standard source in a poster presentation by H. Kakubata by radioactive contaminations within a reference CaF 2 Delayed analyses 214 Bi → 214 Po ( U-chain ) 219 Rn → 215 Po ( Ac-chain ) 220 Rn → 216 Po ( Th-chain) U-chain 214 Po 206 Pb - decay 238 U 214 Bi T 1/2 = 164 sec stable Q = 3.27MeV Q = 7.83MeV UMEHARA Saori, 16 th Nov. 2011, DBD11
Delayed analysis 214 Bi → 214 Po → 210 Pb decay ( β→α decay in U-chain ) Energy Spectra( ∆ t <300 sec) ∆ t distribution Counts 200 Counts experimental data prompt events 180 simulation 160 10 2 140 120 100 214 Bi Q 80 60 40 20 0 0 500 1000 1500 2000 2500 3000 3500 4000 0 200 400 600 800 1000 Energy(keV) Time(microsec) 200 Counts delayed events experimental data 175 Half-life : 175 ± 10 μ sec ( 164 μ sec ) fitting 150 energy resolution : =4.3% 125 214 Po 100 radioactivity : 61 ± 9(syst.)mBq/kg 75 ( previous measurement:65mBq/kg ) 50 Expected performances 25 with current CANDLES III were obtained. 0 0 500 1000 1500 2000 2500 3000 3500 4000 Energy(keV)
Expected Background Background Event in CANDLES System Radioactive Contamination within CaF 2 (pure) Background process Th-Chain 208 Pb 212 Po 232 Th 212 Bi stable 64% Q = 8.95MeV Q = 2.25MeV T 1/2 = 0.3 sec Pile-up event (Sequential event) because . . . E max = 5.3MeV CaF 2 (pure) : (Q = 4.27MeV) time constant ~1 s To reject as the sequential event (background event) ・ identify the “pile-up” shape ・ rays particle identification UMEHARA Saori, 16 th Nov. 2011, DBD11
Sequential Events 212 Bi → 212 Po decay T 1/2 = 0.3 sec Pile-up Th-Chain 212 Bi 212 Po 232 Th Q =7.8MeV Q =2.2MeV T 1/2 = 1.1 x 10 10 year 64% Decay Constant of CaF 2 (pure) prompt delayed : 0.9 sec with small t Typical pulse shape of sequential events Pulse Height Pulse Height Pulse Height 500 600 500 400 500 400 300 400 200 300 Delayed 100 300 Prompt β 0 200 -100 -50 0 50 100 150 200 200 Time(2nsec) 100 100 0 0 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 Time(2nsec) Time(2nsec) Sum-up signal of 62 PMT We can identify the sequential events. Rejection efficiency > 90%
Recommend
More recommend