Math 5490 11/12/2014 Dynamical Systems Math 5490 Stommel’s Model November 12, 2014 Topics in Applied Mathematics: Henry Stommel, Thermohaline Convection with Two Stable Regimes of Flow , T ELLUS XII (1961), 224-230. Introduction to the Mathematics of Climate Mondays and Wednesdays 2:30 – 3:45 http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/ Streaming video is available at http://www.ima.umn.edu/videos/ Click on the link: "Live Streaming from 305 Lind Hall". Participation: https://umconnect.umn.edu/mathclimate Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model dx (1 x ) f x T S dT d c T ( T ) 2 q T y x d cdt dt T S dy 1 y f y dS d S c d ( ) 2 d S S q S R k dt c T 4 T f y Rx 0 ( 2 2 ) kq T S 2 q 1 2 0 flow rate f flow c (1 x ) f x 0 x e e e resistance f Look for equilibria: 1 1 y f y 0 y e e e 1 f Solve for f , 1 R ( ; , ) - f y Rx f R then solve for dx e e (1 x ) f x 1 f f salinity - equilibrium point. d f ( ; , ) f R dy temperature 1 y f y d f y Rx Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model R 1 f ( ; , ) f R ( ) f f 1 f Graphical Interpretation Equilibria Equilibria 1.2 ( ) f Graphical Interpretation 1 f 1.2 0.8 1 1 6 0.6 f 0.8 R 2 density 0.4 0.6 1 6 1 5 0.2 density 0.4 R 2 0 0.2 ‐ 0.2 1 5 0 ‐ 0.4 ‐ 0.2 ‐ 0.6 ‐ 2 ‐ 1.5 ‐ 1 ‐ 0.5 0 0.5 1 1.5 2 ‐ 0.4 f (flow rate ) ‐ 0.6 Temperature dominates. Salinity dominates. ‐ 2 ‐ 1.5 ‐ 1 ‐ 0.5 0 0.5 1 1.5 2 capillary flow: cold to warm capillary flow: warm to cold f (flow rate ) Math 5490 11/12/2014 Math 5490 11/12/2014 Richard McGehee, University of Minnesota 1
Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model Equilibrium Conditions (1 x ) f x 0 x Temperature e e e Salinity dominates. f dominates. 1 capillary flow: 1 y f y 0 y capillary flow: e e e 1 f warm to cold cold to warm 1 R f y Rx e e 1 f f Solve for f , 1 6 then solve for equilibrium point. R 2 1 5 f 1 f f f R 1 f 2 f (1 ) f f ( R 1) (1 R ) f 3 f (1 ) f f f (1 R ) f ( R 1) 0 Stommel, T ELLUS XII (1961) Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model Equilibrium Conditions: Solving for f ( ) f Graphical Interpretation 3 f (1 ) f f f (1 R ) f ( R 1) 0 1.2 Parameters: 1 6 R 2 1 5 1 f 1 3 1 1 1 1 1 1 f (1 ) f f f (1 2 ) f (2 1) 0 0.8 5 5 6 5 6 6 6 1 6 0.6 3 7 1 f f f 1 f 2 f 1 0 5 30 30 3 6 R 2 density 0.4 Case 1: f 0 1 5 0.2 1 3 7 2 21 1 0 f f f 0 5 30 30 6 ‐ 0.2 f Solve numerically. Only one positive root: 0.21909 ‐ 0.4 Case 2: f 0 ‐ 0.6 ‐ 2 ‐ 1.5 ‐ 1 ‐ 0.5 0 0.5 1 1.5 2 1 3 7 2 19 1 f f f 0 f (flow rate ) 5 30 30 6 f -1.068 -0.307 0.219 Solve numerically. Two negative roots: -1.06791, -0.30703 Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model f 0 1 6 Rest Points R 2 1 1 1 5 x , y Temperature e e f 1 6 f 1 f f dominates. 0 c b capillary flow: point : a f -1.06791: cold to warm 1 1 x 0.13500, y 0.48358 e e 1 6 -1.06791 1 -1.06791 point : b f -0.30703: a 1 1 f 0 x 0.35184, y 0.76510 e e 1 6 -1.06791 1 -1.06791 1 6 Salinity dominates. point : c 0.21909: f R 2 capillary flow: 1 1 1 5 x 0.43205, y 0.82 028 warm to cold e e 1 6 -1.06791 1 -1.06791 Math 5490 11/12/2014 Math 5490 11/12/2014 Richard McGehee, University of Minnesota 2
Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model 1 6 Structure of Rest Points Rest Point c R 2 f 0.21909 0, x 0.43205, y 0.82028 x (1 x ) f x e e 1 5 f y Rx y 1 y f y Jacobian matrix Jacobian matrix 2 1 R 1 1 0.21909 0.43205 0.43205 f x x 6 f f 1 5 1 5 f f 1 R R 1 f 0 : f y x , , f x x x y R y 1 2 1 x y 1 f y 0.82028 1 0.21909 0.82028 1 5 1 5 f f 1 R f R f 1 f 0 : f y x , , y 1 f y x y 4.70627 2.16025 x y 8.20284 2.88233 f f 0 0 determinant 4.15521 0 R 1 R 1 f x x f x x stable trace 1.82394 0 spiral R y 1 R y 1 discriminant 13.29410 0 1 f y 1 f y Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model f 0 1 6 Rest Point b R 2 f 0.30703 0, x 0.35184, y 0.76510 1 5 e e Temperature f dominates. 0 Jacobian matrix c b capillary flow: 2 1 R 1 1 0.30703 0.35184 0.35184 f x x 6 cold to warm 1 5 1 5 stable spiral R y 1 2 1 1 f y 0.76510 1 0.30703 0.76510 1 5 1 5 a 3.04476 1.75922 f 0 7.65095 5.13250 1 6 Salinity dominates. R 2 capillary flow: eigenvalue 7.60883 eigenvalue 0.28486 1 5 warm to cold saddle 0.61023 0.28604 eigenvector eigenvector 0.79222 0.95822 Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model f 0 1 6 Rest Point a stable vector R 2 1 5 f -1.06791 0, x 0.13500, y 0.48358 e e f 0 Jacobian matrix c unstable vector b 2 1 R 1 1 -1.06791 0.13500 0.13500 f x x 6 1 5 1 5 stable spiral R y 1 2 1 1 f y 0.48358 1 -1.06791 0.48358 1 5 1 5 a saddle 1 6 0.11541 -0.67500 R 2 0.48358 -4.48581 1 5 f eigenvalue 0.76088 eigenvalue 3.60951 0 stable node 0.61023 0.17831 eigenvector eigenvector 0.79222 0.98398 Math 5490 11/12/2014 Math 5490 11/12/2014 Richard McGehee, University of Minnesota 3
Recommend
More recommend