Math 5490 11/10/2014 Dynamical Systems Math 5490 Nonlinear Systems November 10, 2014 dx dt f p Topics in Applied Mathematics: f x ( ) Rest point : ( ) p 0 Introduction to the Mathematics of Climate Linear approximation: f x ( ) f p ( ) Df p ( )( x p ) Df p ( )( x p ) Mondays and Wednesdays 2:30 – 3:45 http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/ Basic Idea Streaming video is available at Introduce x p . If is small, i.e., if is close to , x p http://www.ima.umn.edu/videos/ Then ( ) f x f p ( ) Df p ( ) d Click on the link: "Live Streaming from 305 Lind Hall". then solutions of f ( p ) d dx f x ( ) f p ( ) Df p ( ) dt Participation: dt dt d are close to solutions of Df p ( ) . https://umconnect.umn.edu/mathclimate dt dx In particular, the rest point is asymptotically stable for p f x ( ) dt d if the origin is asymptotically stable for Df p ( ) . dt Math 5490 11/10/2014 Dynamical Systems Dynamical Systems Flows Flows “Vector Fields Determine Flows” “Vector Fields Determine Flows” Example n n A flow is a continuous map : satisfying vector field: x ax , x , initial value: (0) x x ( ,0) x x , for all , x 0 at solution: x e x ( , x t s ) ( ( , ), ), for all , x t s x t , and . s 0 at flow: ( , ) x t e x 0 0 t Alternate Notation ( ) x ( , ) x t 0 id n Smooth : C , n 0 0 0 t s t s Group Property ( times continuously n differentiable) Big Theorem Check properties: n n If : f is smooth, then the initial value problem Group Property a 0 ( x ,0) e x x x f x ( ), x (0) x , 0 0 0 0 a t s ( ) at as at ( x t , s ) e x e e x e ( x , ) s ( ( x , ), ) s t n n defines a flow : satisfying 0 0 0 0 0 ( x t , ) f ( ( x t , )), ( x ,0) x . 0 0 0 0 Also, is a smooth as . f Math 5490 11/10/2014 Math 5490 11/10/2014 Dynamical Systems Dynamical Systems Flows Flows “Vector Fields Determine Flows” “Vector Fields Determine Flows” Example Example n 2 vector field: x Ax , x initial value: (0) x x vector field: x x , x 0 tA initial value: (0) x x solution: x e x 0 0 tA flow: ( x t , ) e x 0 0 Calculus Check properties: dx x t x Group Property 2 2 2 1 x x dx dt x dx dt x t 0 A dt x 0 x ( x ,0) e x x 0 0 0 0 0 1 1 1 1 1 x t x ( t s A ) tA sA tA 0 0 ( x t , s ) e x e e x e ( x , ) s ( ( x , ), ) s t t t x 0 0 0 0 0 x x x x x 1 x t 0 0 0 0 x 0 solution: x 1 x t 0 Experts Only x 0 flow: ( x t , ) 0 1 x t 0 Math 5490 11/10/2014 Math 5490 11/10/2014 Richard McGehee, University of Minnesota 1
Math 5490 11/10/2014 Dynamical Systems Dynamical Systems Calculus Flows Flows “Vector Fields Determine Flows” “Vector Fields Determine Flows” Example Example 2 2 vector field: x x , x initial value: (0) x x vector field: x x , x initial value: (0) x x 0 0 x x 0 0 flow: ( x t , ) flow: ( x t , ) 0 0 1 x t 1 x t 0 0 Issue: group property Check properties: Solutions do not exist for all time. x 0 ( x ,0) x 0 0 x 1 1 x 0 0 0 ( x t , ) as t 0 1 x t x x 0 0 0 ( x t , ) 1 x t x x 0 0 0 0 ( ( x t s , ), ) ( x t , s ) 0 0 local flow : Solutions exist for some time interval. x 1 ( x t s , ) 1 x t x s 1 x ( t s ) 0 0 1 s 0 0 0 1 x t 0 Math 5490 11/10/2014 Math 5490 11/10/2014 Dynamical Systems Dynamical Systems Flows Flows “Vector Fields Determine Flows” “Vector Fields Determine Flows” Example Example 2 vector field: x 1 x , x 2 vector field: x 1 x , x initial value: (0) x x 0 initial value: x (0) x x tanh t 0 0 flow: ( x t , ) 0 1 x tanh t 0 Calculus dx x t x 2 2 1 2 1 1 1 x (1 x ) dx dt (1 x ) dx dt tanh x t Group Property x 0 dt x 0 0 tanh t tanh s x 1 1 1 1 1 x tanh( t s ) 0 x x tanh tanh t s tanh t tanh s tanh x tanh x t tanh x tanh x t x tanh tanh x t 1 tanh tanh t s 0 0 0 0 0 0 ( x t , s ) 0 tanh t tanh s 1 x tanh( t s ) 1 tanh tanh t s x (tanh t tanh ) s 1 0 1 x 0 tanh(tanh x ) tanh t x tanh t 0 0 0 1 tanh tanh t s x 1 1 x tanh t equal 1 tanh(tanh x )tanh t 0 0 x tanh t 0 tanh s ( x t , ) tanh t 1 x tanh t x tanh t tanh s x tanh tanh t s x tanh t 0 0 0 0 0 ( ( x t s , ), ) flow: ( x t , ) 0 0 1 ( x t , )tanh t x tanh t 1 x tanh t x tanh s tanh tanh t s 1 x tanh t 0 0 1 tanh s 0 0 0 1 x tanh t 0 Math 5490 11/10/2014 Math 5490 11/10/2014 Dynamical Systems Dynamical Systems Flows Flows “Vector Fields Determine Flows” Backwards Time Example n vector field: x f x ( ), x (0) x , x 0 2 vector field: x 1 x , x flow: ( x t , ) f ( x t , ) 0 0 x tanh t 0 local flow: ( x t , ) 0 1 x tanh t Let ( x t , ) ( x , t ) 0 0 0 Issue: then ( x t , ) ( x , t ) ( x , t ) f ( x , t ) f ( x t , ) 0 0 0 0 0 Solutions do not exist for all time. t t So ( x ,t) satisfies x tanh t 0 1 0 x 1 ( x t , ) as t tanh ( 1 x ) 0 0 0 x f x ( ), x (0) x 1 x tanh t 0 0 Going backward in time is the same as following the negative of the vector field. x tanh t 0 1 x 1 ( x t , ) as t tanh ( 1 x ) 0 0 0 1 x tanh t 0 Math 5490 11/10/2014 Math 5490 11/10/2014 Richard McGehee, University of Minnesota 2
Recommend
More recommend