Math 5490 11/3/2014 Dynamical Systems Math 5490 Summary So Far November 3, 2014 Topics in Applied Mathematics: dx a x a y x a a d dt 11 12 x Introduction to the Mathematics of Climate dt A A 11 12 x x dy y a a a x a y 21 22 21 22 Mondays and Wednesdays 2:30 – 3:45 dt http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/ Eigenvalues and eigenvectors Streaming video is available at Av v v 0 http://www.ima.umn.edu/videos/ v u If and are linearly independent eigenvectors Click on the link: "Live Streaming from 305 Lind Hall". with corresponding eigenvalues and , Participation: then the general solution is https://umconnect.umn.edu/mathclimate t t t c e v c e u x ( ) 1 2 c c where and are arbitrary constants. 1 2 Linear independence : one is not a multiple of the other. Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates x x d A x d x x d dt y y A S S 1 AS y y y dt dt v u v 1 u 1 A Suppose that and are linearly independent eigenvectors of v u S v u Av v Au u 2 2 with corresponding eigenvalues and . Introduce new variables and : 0 x x v u v u AS A v u Av Au v u v u S v u 1 1 1 1 S , i.e. 0 v u v u y y 2 2 2 2 v u S 1 1 v u v u where = . v u v u 1 1 a a v u 2 2 v u 11 12 1 1 A v u 2 2 a a v u d d d x x 21 22 2 2 v u 0 S S A AS 1 1 Then a v a v a u a u dt dt dt y y v u 11 1 12 2 11 1 12 2 0 2 2 a v a v a u a u d 21 1 22 2 21 1 22 2 0 S 1 AS v u Av Au dt 0 Math 5490 11/3/2014 Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates x x d x x d d x x d S 1 S 1 A S AS A S AS y y dt y y dt dt y y dt S v u Av v Au u S v u Av v Au u 0 0 AS A v u Av Au v u v u S AS A v u Av Au v u v u S 0 0 S 1 AS d 1 S AS dt dx d a x a y dt 11 12 dt dy d a x a y dt 21 22 dt Math 5490 11/3/2014 Math 5490 11/3/2014 Richard McGehee, University of Minnesota 1
Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates Example Example i i 2 1 dx dx S S x y y i i eigenvalues: 2 and 1 2 eigenvalues: 1 1 1 1 dt dt 1 2 0 1 A A i i 2 1 dy dy 2 0 1 0 eigenvectors: and . 1 0 eigenvectors: i x x 0 1 1 1 1 dt dt 0 1 i 0 x z i i z iz iw x iz iw x 2 S x 2 1 2 y w w z w S 1 1 y z w y y 1 1 dx dx dz d x y y iz 2 2 dt dt dt x x iz iw 2 dt dy dy dw y d y z w x x iw dt dt dt dt Math 5490 11/3/2014 Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates Example dz Example iz dx y x iz iw dt dx ax y dt x a x x a d dw dt y z w A A iw dy dt y a y y a x dt dy x ay dt dt Note that one of these equations is redundant. z y ix 2 A a a a w z trace( ) 2 w y ix 2 A a 2 2 det( ) dr dx y 0 A I 2 2 a a 2 2 dz det( ) 2 dt dt dt iz d dy 1 x dt a a a 2 4 2 4 2 4 2 4 2 dt a i The eigenvalues are 2 2 complex Cartesian polar a i a i and Math 5490 11/3/2014 Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Complex Eigenvalues dx dz dx dy ax y i Then dt dt dt dt z x iy Let . A If is a matrix with real elements and dy ax y i x iay x ay dt A v if is an eigenvalue of with corrresponding eigenvector , a i x iy ( )( ) A v then is an eigenvalue of with corresponding eigenvector . dz a i t i a i t at i t a i z z t z e ( ) r e e ( ) r e e ( ) ( ) Solution: ( ) 0 0 dt 0 0 0 Av v Av v Av v re z i Let . dr dz dr d ar i i i r t r e at e rie a i z a i re Then ( ) ( ) dt ( ) 0 dt dt dt Solution: t t d ( ) dr d 0 ri a i r ( ) dt dt dt Math 5490 11/3/2014 Math 5490 11/3/2014 Richard McGehee, University of Minnesota 2
Recommend
More recommend