MATH 20: PROBABILITY Midterm 2 Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020
Ex Exam How many hours you spend preparing for the exam? Wrapper Wr How many hours you spend on the exam? Content on the last two weeks. for midterm 2 Arrangements for the final. โฆ XC 2020
Problem 1: True or False XC 2020
Can ๐ follow a continuous uniform ? distribution? XC 2020
Density Functions of Continuous Random Variable ยง Let ๐ be a continuous real-valued random variable. A density function for ๐ is a real-valued function ๐ that satis fi es ๐ " ๐ ๐ฆ ๐๐ฆ , for ๐, ๐ โ โ . ๐ ๐ โค ๐ โค ๐ = โซ ! ยง If ๐น is a subset of โ , then ๐ ๐ฆ โ ๐น = # ๐ ๐ฆ ๐๐ฆ . โซ ยง In particular, if ๐น is an interval [๐, ๐] , the probability that the outcome of the experiment falls in ๐น is given by ๐ ๐ ๐ " ๐ ๐ฆ ๐๐ฆ . ๐ [๐, ๐] = โซ ! XC 2020
Can ๐ follow a continuous uniform ? No distribution? ๐ ๐ฆ ? Can ๐ follow a discrete uniform distribution? = โฏ XC 2020
๐ ๐ฆ = 0 ? Can ๐ follow a discrete uniform distribution? ๐ ๐ฆ > 0 XC 2020
$% ? Can ๐ follow a discrete uniform distribution? ๐ ๐ฆ = 0 , 0 = 0 !"# $% No ๐ ๐ฆ > 0 , ๐ = +โ !"# XC 2020
Problem 1: True or False Discr crete variance ce ๐ ๐ Co Continuous variance ๐ ๐ ๐น ๐ & โ ๐ & = 0 = $% ๐ฆ โ ๐ & ๐ ๐ฆ ๐๐ฆ ๐ โ ๐ & = , 0 = 6 (๐ฆ โ ๐) & ๐(๐ฆ) . = ๐น *% 'โ) ๐ = ๐ XC 2020
Problem 2: Computation XC 2020
๐น ๐ &#&# = ๐น &#&# (๐) ? XC 2020
The Product of Two Random Variables ยง Let ๐ and ๐ be independent real-valued continuous random variables with fi nite expected values. Then we have ๐น(๐๐) = ๐น(๐)๐น(๐) . ยง More generally, for ๐ mutually independent random variables ๐ ! , we have ๐น ๐ + ๐ & โฏ ๐ , = ๐น ๐ + ๐น ๐ & โฏ ๐น(๐ , ) . ๐น ๐ &#&# = ๐น &#&# (๐) ? XC 2020
? Are ๐ and ๐ independent? If ๐ is any random variable and ๐ is any constant, then ยง ๐ ๐๐ = ๐ & ๐(๐) , ๐ ๐ + ๐ = ๐(๐) . Let ๐ and ๐ be two independent random variables. Then ยง ๐(๐ + ๐) = ๐(๐) + ๐(๐) . ๐ 2๐ = 4๐ ๐ ? ๐ ๐ + ๐ = 2๐ ๐ ? XC 2020
Problem 2: Computation XC 2020
Moment: ! ๐น ๐ , , where ๐ = 1, 2, 3, โฏ XC 2020
Problem 3: Proof ๐ฆ ! โ ฬ ๐ฆ = (๐ฆ ! โ ๐) + (๐ โ ฬ ๐ฆ) XC 2020
๐น ๐ก & = ๐ โ 1 ๐ & ๐ How to redefine ๐ก & , so ๐น ๐ก & = ๐ & ? that XC 2020
XC 2020
Extreme: ! ๐ - ๐ฆ = 0 ๐ -- ๐ฆ > 0 ๐ -- ๐ฆ < 0 ! ! Minimum: Maximum: XC 2020
Problem 4: Manipulation XC 2020
XC 2020
XC 2020
Calvin At Ca Atkeson, , Max ax Te Telemaque v ๐ = ๐๐ + ๐ , ๐น ๐ = ๐๐น ๐ + ๐ , ๐ ๐ = ๐ & ๐(๐) ๐น ๐ = + ๐ ๐ = + ๐ : uniform on [0, 1] , & , +& ๐ ๐ = (/*.) ! ๐น ๐ = .$/ ๐ : uniform on [๐, ๐] , & , +& XC 2020
Problem 5: Educational Attainment XC 2020
Which one to use? Bin Binomia ial d dist istrib ibutio ion ๐ ๐, ๐, ๐ = ๐ ๐ ๐ ! ๐ "#! Po Poisson Distribution tw two parameter eters ! ๐ ๐ = ๐ = ๐ ! ๐! ๐ #$ ๐ ๐ on one parameter ! ๐ XC 2020
Which one to use? Bin Binomia ial d dist istrib ibutio ion ๐ ๐, ๐, ๐ = ๐ ๐ ๐ ! ๐ "#! Po Poisson Distribution ๐ < +โ ! ๐ ๐ = ๐ = ๐ ! ๐! ๐ #$ ๐ โ +โ ! XC 2020
Which one to use? Bin Binomia ial d dist istrib ibutio ion ๐ ๐, ๐, ๐ = ๐ ๐ ๐ ! ๐ "#! Poisson Po Distribution ๐ = ๐, ๐, โฏ ! ๐ ๐ = ๐ = ๐ ! ๐! ๐ #$ ๐ = ๐๐, ๐๐๐, โฏ ! ๐๐ = ๐ = XC 2020
MATH 20 BABY PROBABILISTS When you cannot explain something: use Po Poisson di distribu bution (Poisson process)! XC 2020
XC 2020
Problem 6: Cupidโs Arrow XC 2020
XC 2020
๐(๐ > ๐) $% $% 6 6 ๐๐ง๐๐ฆ '"# 2"' XC 2020
XC 2020
๐(๐ > ๐) $% ' 6 6 ๐๐ง๐๐ฆ '"# 2"# XC 2020
๐(๐ โฅ ๐ + 300) $% $% 6 6 ๐๐ง๐๐ฆ '"# 2"'$3## XC 2020
๐ ๐ > ๐ = 2 ? Daphne will break free from the enchantment first? 7 1 1 golden arrow: 200 years ๐ . = = 2 500 200 200 + 1 1 7 500 1 lead arrow: 500 years ๐ / = 500 ๐ 4 ๐ ๐ > ๐ = ๐ 5 + ๐ 4 XC 2020
Apollo will break free from the enchantment first and ? Daphne has to wait another 300 years or more before her arrow wears off? ๐ ๐ > ๐ โฉ ๐ โฅ ๐ + 300 ๐ ๐ โฅ ๐ + 300 = 5 7 ๐ *3/7 XC 2020
1 ๐ 4 = 2 ๐ 5 = 5 ๐ . = ๐ ๐ > ๐ = ๐ ๐ > ๐ = 200 ๐ 5 + ๐ 4 7 ๐ 5 + ๐ 4 7 1 ๐ / = 500 ๐ ๐ โฅ ๐ + 300 = 5 7 ๐ *3/7 ๐ ๐ > 300 = ๐ *3/7 ๐ ๐ > ๐ง = ๐ *8 " 2 XC 2020
๐ 5 = 5 ๐ ๐ > 300 = ๐ *3/7 ๐ ๐ > ๐ = ๐ 5 + ๐ 4 7 ๐ ๐ โฅ ๐ + 300 = 5 7 ๐ *3/7 ๐ ๐ โฅ ๐ + 300 = ๐ ๐ > 300 ๐(๐ > ๐) ๐ ๐ > ๐ + 300|๐ > ๐ ๐(๐ > ๐) Memoryless Property ๐ ๐ > ๐ + ๐ก|๐ > ๐ = ๐ ๐ > ๐ก XC 2020
Problem 7: Man with No Name: A fi stful of Nuts XC 2020
Conditional Expectation ยง If ๐บ is any event and ๐ is a random variable with sample space ฮฉ = {๐ฆ + , ๐ฆ & , โฏ } , then the conditional expectation given ๐บ is de fi ned by ๐น ๐ ๐บ = โ 9 ๐ฆ 9 ๐(๐ = ๐ฆ 9 |๐บ) . ยง Let ๐ be a random variable with sample space ฮฉ . If ๐บ + , ๐บ & , โฏ , ๐บ : are events such that ๐บ ! โฉ ๐บ 9 = โ for ๐ โ ๐ and ฮฉ =โช 9 ๐บ 9 , then 9 ) . ๐น ๐ = โ 9 ๐น ๐ ๐บ 9 ๐(๐บ XC 2020
Conditional Expectation ยง Conditional density joint density 5 $,& (7, 8) 5 & (8) . ๐ .|/ ๐ฆ ๐ง = marginal density ยง Conditional expected value .|/ ๐ฆ ๐ง ๐๐ฆ . ๐น ๐ ๐ = ๐ง = โซ ๐ฆ๐ ยง Expected value / ๐ง ๐๐ง . ๐น ๐ = โซ ๐น ๐ ๐ = ๐ง ๐ XC 2020
EXAMPLE Farming Sim XC 2020
Example ยง A point ๐ is chosen at random from [0, 1] uniformly. A second point ๐ is then uniformly and randomly chosen from the interval [0, ๐] . Find the expected value for ๐ . 1 ๐ง 0 5|4 ๐ฆ ๐ง = ๐ 5,4 (๐ฆ, ๐ง) ๐ ๐ 4 (๐ง) ๐น ๐ ๐ = ๐ง = 6 ๐ฆ๐ 5|4 ๐ฆ ๐ง ๐๐ฆ XC 2020
tw two Ge Geometric Di Distribu bution ! ๐ ๐ = ๐ = ๐ ,*+ ๐ same sa me ! tr trial 2 fi first ! tr trial 1 independent in ! XC 2020
Geometric Ge Di Distribu bution ๐ ๐ = ๐ = ๐ ,*+ ๐ Ge Geometric ๐น ๐ = 1 ๐ ๐ = ๐ = ๐ ,*+ ๐ ๐ ๐ ๐ = ๐ = ๐ฆ , (1 โ ๐ฆ) XC 2020
XC 2020
โฆ v ๐ ๐ = ๐ ๐ = ๐ฆ = ๐ฆ , (1 โ ๐ฆ) + ๐น ๐ = ๐ ๐ = ๐ฆ = 6 ๐ฆ๐ ๐ = ๐ ๐ = ๐ฆ ๐๐ฆ # $% ๐น ๐ = ๐ ๐ = ๐ฆ = , ๐๐ ๐ = ๐ ๐ = ๐ฆ ,"# XC 2020
XC 2020
Problem 8: Man with No Name: Out of San Pecan XC 2020
Expectation of Functions of Random Variables ยง If ๐ is a real-valued random variable and if ๐: ๐ โ ๐ is a continuous real-valued function with domain [๐, ๐] , then $% ๐(๐ฆ)๐ ๐ฆ ๐๐ฆ , ๐น ๐(๐) = โซ *% provided the integral exists. Discr crete expect cted value ๐ญ ๐(๐) Con ontinuou ous expect cted value ๐ญ ๐(๐) $% , ๐(๐ฆ)๐(๐ฆ) 6 ๐(๐ฆ)๐ ๐ฆ ๐๐ฆ *% 'โ) XC 2020
XC 2020
Recommend
More recommend