math 20 probability

MATH 20: PROBABILITY Midterm 2 Xingru Chen - PowerPoint PPT Presentation

MATH 20: PROBABILITY Midterm 2 Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 Ex Exam How many hours you spend preparing for the exam? Wrapper Wr How many hours you spend on the exam? Content on the last two weeks.


  1. MATH 20: PROBABILITY Midterm 2 Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. Ex Exam How many hours you spend preparing for the exam? Wrapper Wr How many hours you spend on the exam? Content on the last two weeks. for midterm 2 Arrangements for the final. … XC 2020

  3. Problem 1: True or False XC 2020

  4. Can π‘Œ follow a continuous uniform ? distribution? XC 2020

  5. Density Functions of Continuous Random Variable Β§ Let π‘Œ be a continuous real-valued random variable. A density function for π‘Œ is a real-valued function 𝑔 that satis fi es 𝒛 " 𝑔 𝑦 𝑒𝑦 , for 𝑏, 𝑐 ∈ ℝ . 𝑄 𝑏 ≀ π‘Œ ≀ 𝑐 = ∫ ! Β§ If 𝐹 is a subset of ℝ , then 𝑄 𝑦 ∈ 𝐹 = # 𝑔 𝑦 𝑒𝑦 . ∫ Β§ In particular, if 𝐹 is an interval [𝑏, 𝑐] , the probability that the outcome of the experiment falls in 𝐹 is given by 𝑏 𝑐 π’š " 𝑔 𝑦 𝑒𝑦 . 𝑄 [𝑏, 𝑐] = ∫ ! XC 2020

  6. Can π‘Œ follow a continuous uniform ? No distribution? 𝑛 𝑦 ? Can π‘Œ follow a discrete uniform distribution? = β‹― XC 2020

  7. 𝑛 𝑦 = 0 ? Can π‘Œ follow a discrete uniform distribution? 𝑛 𝑦 > 0 XC 2020

  8. $% ? Can π‘Œ follow a discrete uniform distribution? 𝑛 𝑦 = 0 , 0 = 0 !"# $% No 𝑛 𝑦 > 0 , 𝑑 = +∞ !"# XC 2020

  9. Problem 1: True or False Discr crete variance ce π‘Š π‘Œ Co Continuous variance π‘Š π‘Œ 𝐹 π‘Œ & βˆ’ 𝜈 & = 0 = $% 𝑦 βˆ’ 𝜈 & 𝑔 𝑦 𝑒𝑦 π‘Œ βˆ’ 𝜈 & = , 0 = 6 (𝑦 βˆ’ 𝜈) & 𝑛(𝑦) . = 𝐹 *% '∈) π‘Œ = 𝜈 XC 2020

  10. Problem 2: Computation XC 2020

  11. 𝐹 π‘Œ &#&# = 𝐹 &#&# (π‘Œ) ? XC 2020

  12. The Product of Two Random Variables Β§ Let π‘Œ and 𝑍 be independent real-valued continuous random variables with fi nite expected values. Then we have 𝐹(π‘Œπ‘) = 𝐹(π‘Œ)𝐹(𝑍) . Β§ More generally, for π‘œ mutually independent random variables π‘Œ ! , we have 𝐹 π‘Œ + π‘Œ & β‹― π‘Œ , = 𝐹 π‘Œ + 𝐹 π‘Œ & β‹― 𝐹(π‘Œ , ) . 𝐹 π‘Œ &#&# = 𝐹 &#&# (π‘Œ) ? XC 2020

  13. ? Are π‘Œ and π‘Œ independent? If π‘Œ is any random variable and 𝑑 is any constant, then Β§ π‘Š π‘‘π‘Œ = 𝑑 & π‘Š(π‘Œ) , π‘Š π‘Œ + 𝑑 = π‘Š(π‘Œ) . Let π‘Œ and 𝑍 be two independent random variables. Then Β§ π‘Š(π‘Œ + 𝑍) = π‘Š(π‘Œ) + π‘Š(𝑍) . π‘Š 2π‘Œ = 4π‘Š π‘Œ ? π‘Š π‘Œ + π‘Œ = 2π‘Š π‘Œ ? XC 2020

  14. Problem 2: Computation XC 2020

  15. Moment: ! 𝐹 π‘Œ , , where π‘œ = 1, 2, 3, β‹― XC 2020

  16. Problem 3: Proof 𝑦 ! βˆ’ Μ… 𝑦 = (𝑦 ! βˆ’ 𝜈) + (𝜈 βˆ’ Μ… 𝑦) XC 2020

  17. 𝐹 𝑑 & = π‘œ βˆ’ 1 𝜏 & π‘œ How to redefine 𝑑 & , so 𝐹 𝑑 & = 𝜏 & ? that XC 2020

  18. XC 2020

  19. Extreme: ! 𝑔 - 𝑦 = 0 𝑔 -- 𝑦 > 0 𝑔 -- 𝑦 < 0 ! ! Minimum: Maximum: XC 2020

  20. Problem 4: Manipulation XC 2020

  21. XC 2020

  22. XC 2020

  23. Calvin At Ca Atkeson, , Max ax Te Telemaque v 𝑉 = π‘π‘Œ + 𝑐 , 𝐹 𝑉 = 𝑏𝐹 π‘Œ + 𝑐 , π‘Š 𝑉 = 𝑏 & π‘Š(π‘Œ) 𝐹 𝑉 = + π‘Š 𝑉 = + 𝑉 : uniform on [0, 1] , & , +& π‘Š π‘Œ = (/*.) ! 𝐹 π‘Œ = .$/ π‘Œ : uniform on [𝑑, 𝑒] , & , +& XC 2020

  24. Problem 5: Educational Attainment XC 2020

  25. Which one to use? Bin Binomia ial d dist istrib ibutio ion 𝑐 π‘œ, π‘ž, 𝑙 = π‘œ 𝑙 π‘ž ! π‘Ÿ "#! Po Poisson Distribution tw two parameter eters ! 𝑄 π‘Œ = 𝑙 = πœ‡ ! 𝑙! 𝑓 #$ 𝒐 𝒒 on one parameter ! 𝝁 XC 2020

  26. Which one to use? Bin Binomia ial d dist istrib ibutio ion 𝑐 π‘œ, π‘ž, 𝑙 = π‘œ 𝑙 π‘ž ! π‘Ÿ "#! Po Poisson Distribution 𝒐 < +∞ ! 𝑄 π‘Œ = 𝑙 = πœ‡ ! 𝑙! 𝑓 #$ 𝒐 β†’ +∞ ! XC 2020

  27. Which one to use? Bin Binomia ial d dist istrib ibutio ion 𝑐 π‘œ, π‘ž, 𝑙 = π‘œ 𝑙 π‘ž ! π‘Ÿ "#! Poisson Po Distribution 𝒐 = πŸ‘, πŸ”, β‹― ! 𝑄 π‘Œ = 𝑙 = πœ‡ ! 𝑙! 𝑓 #$ 𝒐 = πŸ”πŸ, 𝟐𝟏𝟏, β‹― ! 𝒐𝒒 = 𝝁 = XC 2020

  28. MATH 20 BABY PROBABILISTS When you cannot explain something: use Po Poisson di distribu bution (Poisson process)! XC 2020

  29. XC 2020

  30. Problem 6: Cupid’s Arrow XC 2020

  31. XC 2020

  32. 𝑄(𝑍 > π‘Œ) $% $% 6 6 𝑒𝑧𝑒𝑦 '"# 2"' XC 2020

  33. XC 2020

  34. 𝑄(π‘Œ > 𝑍) $% ' 6 6 𝑒𝑧𝑒𝑦 '"# 2"# XC 2020

  35. 𝑄(𝑍 β‰₯ π‘Œ + 300) $% $% 6 6 𝑒𝑧𝑒𝑦 '"# 2"'$3## XC 2020

  36. 𝑄 π‘Œ > 𝑍 = 2 ? Daphne will break free from the enchantment first? 7 1 1 golden arrow: 200 years πœ‡ . = = 2 500 200 200 + 1 1 7 500 1 lead arrow: 500 years πœ‡ / = 500 πœ‡ 4 𝑄 π‘Œ > 𝑍 = πœ‡ 5 + πœ‡ 4 XC 2020

  37. Apollo will break free from the enchantment first and ? Daphne has to wait another 300 years or more before her arrow wears off? 𝑄 𝑍 > π‘Œ ∩ 𝑍 β‰₯ π‘Œ + 300 𝑄 𝑍 β‰₯ π‘Œ + 300 = 5 7 𝑓 *3/7 XC 2020

  38. 1 πœ‡ 4 = 2 πœ‡ 5 = 5 πœ‡ . = 𝑄 π‘Œ > 𝑍 = 𝑄 𝑍 > π‘Œ = 200 πœ‡ 5 + πœ‡ 4 7 πœ‡ 5 + πœ‡ 4 7 1 πœ‡ / = 500 𝑄 𝑍 β‰₯ π‘Œ + 300 = 5 7 𝑓 *3/7 𝑄 𝑍 > 300 = 𝑓 *3/7 𝑄 𝑍 > 𝑧 = 𝑓 *8 " 2 XC 2020

  39. πœ‡ 5 = 5 𝑄 𝑍 > 300 = 𝑓 *3/7 𝑄 𝑍 > π‘Œ = πœ‡ 5 + πœ‡ 4 7 𝑄 𝑍 β‰₯ π‘Œ + 300 = 5 7 𝑓 *3/7 𝑄 𝑍 β‰₯ π‘Œ + 300 = 𝑄 𝑍 > 300 𝑄(𝑍 > π‘Œ) 𝑄 𝑍 > π‘Œ + 300|𝑍 > π‘Œ 𝑄(𝑍 > π‘Œ) Memoryless Property 𝑄 π‘Œ > 𝑠 + 𝑑|π‘Œ > 𝑠 = 𝑄 π‘Œ > 𝑑 XC 2020

  40. Problem 7: Man with No Name: A fi stful of Nuts XC 2020

  41. Conditional Expectation Β§ If 𝐺 is any event and π‘Œ is a random variable with sample space Ξ© = {𝑦 + , 𝑦 & , β‹― } , then the conditional expectation given 𝐺 is de fi ned by 𝐹 π‘Œ 𝐺 = βˆ‘ 9 𝑦 9 𝑄(π‘Œ = 𝑦 9 |𝐺) . Β§ Let π‘Œ be a random variable with sample space Ξ© . If 𝐺 + , 𝐺 & , β‹― , 𝐺 : are events such that 𝐺 ! ∩ 𝐺 9 = βˆ… for 𝑗 β‰  π‘˜ and Ξ© =βˆͺ 9 𝐺 9 , then 9 ) . 𝐹 π‘Œ = βˆ‘ 9 𝐹 π‘Œ 𝐺 9 𝑄(𝐺 XC 2020

  42. Conditional Expectation Β§ Conditional density joint density 5 $,& (7, 8) 5 & (8) . 𝑔 .|/ 𝑦 𝑧 = marginal density Β§ Conditional expected value .|/ 𝑦 𝑧 𝑒𝑦 . 𝐹 π‘Œ 𝑍 = 𝑧 = ∫ 𝑦𝑔 Β§ Expected value / 𝑧 𝑒𝑧 . 𝐹 π‘Œ = ∫ 𝐹 π‘Œ 𝑍 = 𝑧 𝑔 XC 2020

  43. EXAMPLE Farming Sim XC 2020

  44. Example Β§ A point 𝑍 is chosen at random from [0, 1] uniformly. A second point π‘Œ is then uniformly and randomly chosen from the interval [0, 𝑍] . Find the expected value for π‘Œ . 1 𝑧 0 5|4 𝑦 𝑧 = 𝑔 5,4 (𝑦, 𝑧) 𝑔 𝑔 4 (𝑧) 𝐹 π‘Œ 𝑍 = 𝑧 = 6 𝑦𝑔 5|4 𝑦 𝑧 𝑒𝑦 XC 2020

  45. tw two Ge Geometric Di Distribu bution ! 𝑄 π‘ˆ = π‘œ = π‘Ÿ ,*+ π‘ž same sa me ! tr trial 2 fi first ! tr trial 1 independent in ! XC 2020

  46. Geometric Ge Di Distribu bution 𝑄 π‘ˆ = π‘œ = π‘Ÿ ,*+ π‘ž Ge Geometric 𝐹 π‘Œ = 1 𝑄 π‘ˆ = π‘œ = π‘Ÿ ,*+ π‘ž π‘ž 𝑄 𝑂 = π‘œ = 𝑦 , (1 βˆ’ 𝑦) XC 2020

  47. XC 2020

  48. … v 𝑄 𝑂 = π‘œ π‘Œ = 𝑦 = 𝑦 , (1 βˆ’ 𝑦) + 𝐹 𝑂 = π‘œ π‘Œ = 𝑦 = 6 𝑦𝑄 𝑂 = π‘œ π‘Œ = 𝑦 𝑒𝑦 # $% 𝐹 𝑂 = π‘œ π‘Œ = 𝑦 = , π‘œπ‘„ 𝑂 = π‘œ π‘Œ = 𝑦 ,"# XC 2020

  49. XC 2020

  50. Problem 8: Man with No Name: Out of San Pecan XC 2020

  51. Expectation of Functions of Random Variables Β§ If π‘Œ is a real-valued random variable and if 𝜚: 𝑆 β†’ 𝑆 is a continuous real-valued function with domain [𝑏, 𝑐] , then $% 𝜚(𝑦)𝑔 𝑦 𝑒𝑦 , 𝐹 𝜚(π‘Œ) = ∫ *% provided the integral exists. Discr crete expect cted value 𝑭 𝝔(𝒀) Con ontinuou ous expect cted value 𝑭 𝝔(𝒀) $% , 𝜚(𝑦)𝑛(𝑦) 6 𝜚(𝑦)𝑔 𝑦 𝑒𝑦 *% '∈) XC 2020

  52. XC 2020

Recommend


More recommend