MATH 20: PROBABILITY Generating Functions Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020
di distri ribution Random Variable Password Lo Log I In Forget Password XC 2020
di distri ribution Random Variable Expected Value & Variance Lo Log I In Forget Password XC 2020
Binomial Distribution and Normal Distribution Binomia Bin ial D Dist istrib ibutio ion Norma Nor mal Distribution on ๐น(๐) & ๐(๐) ๐ ๐, ๐, ๐ = ๐ 1 ๐ ๐ ! ๐ "#! ๐๐ = ๐ ๐ # %#& ! /() ! ยง ๐ $ ๐ฆ = ๐๐ 1 โ ๐ = ๐ ( 2๐๐ ยง XC 2020
di distri ribution Random Variable Moments Lo Log I In Forget Password XC 2020
GENERATING FUNCTIONS discrete distribution XC 2020
Moments ยง If ๐ is a random variable with range ๐ฆ * , ๐ฆ ( , โฏ of at most countable size, and the distribution function ๐ = ๐ $ , we introduce the moments of ๐ , which are numbers defined as follows: ๐ ! = ๐ th moment of ๐ = ๐น ๐ ! ! ๐(๐ฆ + ) , -. ๐ฆ + = โ +,* provided the sum converges. Here ๐ ๐ฆ + = ๐(๐ = ๐ฆ + ) . ? ๐ ! = โฏ XC 2020
๐ th moment of ๐ ๐ $ = 1 = &' " ๐(๐ฆ # ) ๐ " = ๐น ๐ " = * ๐ฆ # #$% &' ๐ ! = ๐น 1 = * ๐(๐ฆ # ) ๐ % = โฏ ? #$% &' ๐ % = ๐น ๐ = * ๐ฆ # ๐(๐ฆ # ) #$% &' ๐ & = โฏ ๐ ( = ๐น ๐ ( = * ( ๐(๐ฆ # ) ? ๐ฆ # #$% XC 2020
Expected Value & Variance ๐ th moment of ๐ ๐ " = ๐น ๐ " &' " ๐(๐ฆ # ) = * ๐ฆ # Expe pecte ted Value ue #$% ๐ & = โฏ ๐ % = ๐น ๐ &' = * ๐ฆ # ๐(๐ฆ # ) ๐ = โฏ Variance Va #$% ๐ ( = ๐น ๐ ( &' ( ๐(๐ฆ # ) = * ๐ฆ # #$% XC 2020
Expected Value & Variance ๐ th moment of ๐ ๐ " = ๐น ๐ " &' " ๐(๐ฆ # ) = * ๐ฆ # Expe pecte ted Value ue #$% ๐ & = ๐ & โ ๐ % & ๐ % = ๐น ๐ &' = * ๐ฆ # ๐(๐ฆ # ) ๐ = ๐ % Va Variance #$% ๐ = ๐ % ๐ ( = ๐น ๐ ( &' ( ๐(๐ฆ # ) = * ๐ฆ # #$% XC 2020
Moment Generating Functions ยง We introduce a new variable ๐ข, and de fi ne a function ๐(๐ข) as follows: Ex Expect cted val alue ๐ญ ๐(๐) &' ๐ !( ! ๐(๐ฆ # ) . ๐ ๐ข = ๐น ๐ !" = โ #$% & ๐(๐ฆ)๐(๐ฆ) ยง We call ๐(๐ข) the moment generating function for ๐ , and think of it as a convenient bookkeeping device for "โ$ describing the moments of ๐ . &' ๐ " ๐ข " &' ๐น(๐ " )๐ข " &' ๐ " ๐ข " Taylor ๐ ๐ข = ๐น ๐ )* = ๐น = * = * = * Expansion ๐! ๐! ๐! "$! "$! "$! XC 2020
Moment Generating Functions ยง If we differentiate ๐(๐ข) ๐ times and then set ๐ข = 0 , we get ๐ " . &' ๐ " ๐ข " &' ๐ ๐ข = ๐น ๐ )* = * ๐ )+ ! ๐(๐ฆ # ) = * = ๐! #$% "$! &' ๐ " ๐ข " &' ๐! ๐ " ๐ข "-, &' ๐ " ๐ข "-, &' ๐ " ๐ข "-, ๐๐ข , ๐ ๐ข = ๐ , ๐ , ๐ , ๐๐ข , * = * ๐! ๐ โ ๐ ! = * ๐๐ข , ๐ ๐ข | )$! = * ๐ โ ๐ ! | )$! = ๐ , ๐! ๐ โ ๐ ! "$! "$, "$, "$, ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , XC 2020
Uniform Distribution Ra Random vari riable le range: 1, 2, 3, โฏ , ๐ ๐ * ๐ = % distribution function: , Generating funct ction on , 1 *+ ๐ , ๐ข , *+ ๐ ๐ )# = 1 ๐ ๐ ) + ๐ () + ๐ .) + โฏ + ๐ ,) ๐ ๐ข = ๐น ๐ %& = & ๐ ๐ข = * ๐ %" ! ๐(๐ฆ ' ) = & = ๐! '() ,(- #$% / " (/ #" -%) ,(/ " -%) . = ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , XC 2020
Uniform Distribution Random Ra vari riable le range: 1, 2, 3, โฏ , ๐ % distribution function: ๐ * ๐ = , Generating funct ction on / " (/ #" -%) , ๐ )# = % , ,(/ " -%) . ๐ ๐ข = โ #$% *+ ๐ , ๐ข , *+ ๐ ๐ข = ๐น ๐ %& = & ๐ %" ! ๐(๐ฆ ' ) = & = ๐! Mom Moments '() ,(- ๐ % = ๐ 2 0 = % ,&% ( . , 1 + 2 + 3 + โฏ + ๐ = ๐ , 0 = ๐ , ๐ ( = ๐ 22 0 = , 1 + 4 + 9 + โฏ + ๐ ( = % (,&%)((,&%) . = ๐๐ข , ๐ ๐ข | )$! = ๐ , 3 XC 2020
Uniform Distribution Ra Random vari riable le range: 1, 2, 3, โฏ , ๐ % distribution function: ๐ * ๐ = , Generating funct ction on / " (/ #" -%) , ๐ )# = % , ,(/ " -%) . ๐ ๐ข = โ #$% Mom Moments ๐ % = ๐ 2 0 = % ,&% ( . , 1 + 2 + 3 + โฏ + ๐ = ๐ ( = ๐ 22 0 = , 1 + 4 + 9 + โฏ + ๐ ( = % (,&%)((,&%) . 3 ๐ = ๐ * Expect cted value & variance ce ๐ ( = ๐ ( โ ๐ * ( ๐ = ๐ % = ๐ + 1 . 2 , $ -% ๐ ( = ๐ ( โ ๐ % ( = %( . XC 2020
Binomial Distribution Random Ra vari riable le range: 0, 1, 2, 3, โฏ , ๐ , distribution function: ๐ * ๐ = # ๐ # ๐ ,-# Generating funct ction on , *+ ๐ , ๐ข , *+ ๐ )# ๐ ๐ ๐ # ๐ ,-# = ๐ ๐ข = ๐น ๐ %& = & ๐ ๐ข = * ๐ %" ! ๐(๐ฆ ' ) = & = ๐! '() ,(- #$% # (๐๐ ) ) # ๐ ,-# = (๐๐ ) + ๐) , . , , โ #$% ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , XC 2020
Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, โฏ , ๐ , distribution function: ๐ * ๐ = # ๐ # ๐ ,-# Generating funct ction on # ๐ # ๐ ,-# = (๐๐ ) + ๐) , . , , ๐ )# ๐ ๐ข = โ #$% *+ ๐ , ๐ข , *+ ๐ ๐ข = ๐น ๐ %& = & ๐ %" ! ๐(๐ฆ ' ) = & = ๐! Moments Mom '() ,(- ๐ % = ๐ 2 0 = ๐(๐๐ ) + ๐) ,-% ๐๐ ) | )$! = ๐๐ . ๐ ( = ๐ 22 0 = ๐ ๐ โ 1 ๐ ( + ๐๐ . ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , XC 2020
Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, โฏ , ๐ , distribution function: ๐ * ๐ = # ๐ # ๐ ,-# Generating funct ction on # ๐ # ๐ ,-# = (๐๐ ) + ๐) , . , , ๐ )# ๐ ๐ข = โ #$% Mom Moments ๐ % = ๐ 2 0 = ๐๐ . ๐ ( = ๐ 22 0 = ๐ ๐ โ 1 ๐ ( + ๐๐ . ๐ = ๐ * Expect cted value & variance ce ๐ ( = ๐ ( โ ๐ * ๐ = ๐ % = ๐๐. ( ๐ ( = ๐ ( โ ๐ % ( = ๐๐(1 โ ๐) . XC 2020
Geometric Distribution Ra Random vari riable le range: 1, 2, 3, โฏ , ๐ distribution function: ๐ * ๐ = ๐ #-% ๐ *+ ๐ , ๐ข , *+ ๐ ๐ข = ๐น ๐ %& = & = ๐ %" ! ๐(๐ฆ ' ) = & ๐! Generating funct ction on '() ,(- 4/ " , %-5/ " . ๐ )# ๐ #-% ๐ = ๐ ๐ข = โ #$% Moments Mom ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , 4/ " ๐ % = ๐ 2 0 = % 4 . (%-5/ " ) $ | )$! = 4/ " &45/ $" ๐ ( = ๐ 22 0 = %&5 4 $ . (%-5/ " ) % | )$! = Expect cted value & variance ce ๐ = ๐ * ๐ = ๐ % = 1 ๐ ( = ๐ ( โ ๐ * ( ๐ . ๐ ( = ๐ ( โ ๐ % ( = 5 4 $ . XC 2020
Poisson Distribution Ra Random vari riable le range: 0, 1, 2, 3, โฏ , ๐ ๐ * ๐ = ๐ -6 6 ! distribution function: #! Generating funct ction on ๐ )# ๐ -6 6 ! (6/ " ) ! #! = ๐ -6 โ #$% = ๐ 6(/ " -%) . , , ๐ ๐ข = โ #$% #! Mom Moments ๐ % = ๐ 2 0 = ๐ 6(/ " -%) ๐๐ ) | )$! = ๐ . ๐ ( = ๐ 22 0 = ๐ 6(/ " -%) ๐ ( ๐ () + ๐๐ ) | )$! = ๐ ( + ๐ . *+ ๐ , ๐ข , *+ ๐ ๐ข = ๐น ๐ %& = & ๐ %" ! ๐(๐ฆ ' ) = & = ๐! '() ,(- Expect cted value & variance ce ๐ = ๐ % = ๐. ๐ ( = ๐ ( โ ๐ % ( = ๐. ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , XC 2020
Unifor Un orm ๐ ๐ = ๐ = 1 ๐ ๐ = " ! #* ๐น ๐ = "-* ( , ๐ *( Bin Binomia ial ๐ ๐, ๐, ๐ = ๐ ๐น ๐ = ๐๐ , ๐ ๐ = ๐๐๐ ๐ ๐ ! ๐ "#! Geometric Ge ๐น ๐ = * ๐ ๐ = *#/ / , ๐ ๐ = ๐ = ๐ "#* ๐ / ! Po Poisson ๐ ๐ = ๐ = ๐ ! ๐น ๐ = ๐ , ๐ ๐ = ๐ ๐! ๐ #0 XC 2020
Unifor Un orm ๐ ๐ข = ๐ 1 (๐ "1 โ 1) ๐ ๐ = ๐ = 1 ๐(๐ 1 โ 1) ๐ Bin Binomia ial ๐ ๐, ๐, ๐ = ๐ ๐ ๐ข = (๐๐ 1 + ๐) " ๐ ๐ ! ๐ "#! Geometric Ge ๐๐ 1 ๐ ๐ = ๐ = ๐ "#* ๐ ๐ ๐ข = 1 โ ๐๐ 1 Poisson Po ๐ ๐ = ๐ = ๐ ! ๐ ๐ข = ๐ 0(3 . #*) ๐! ๐ #0 XC 2020
XC 2020
Po Poisson ๐ ๐ = ๐ = ๐ ! ๐ ๐ข = ๐ 0(3 . #*) . ๐! ๐ #0 ๐ , 0 = ๐ , = ๐๐ข , ๐ ๐ข | )$! = ๐ , ๐น ๐ . = ๐ . = ๐ . ๐๐ข . ๐ ๐ข | )$! = ๐ . ๐๐ข . ๐ 6(/ " -%) | )$! = ๐ ๐๐ข ๐ 6(/ " -%) ๐ ( ๐ () + ๐๐ ) | )$! = ๐ 6(/ " -%) ๐ . ๐ .) + 3๐ ( ๐ () + ๐๐ ) | )$! = ๐ . + 3๐ ( + ๐ XC 2020
Recommend
More recommend