math 20 probability
play

MATH 20: PROBABILITY Generating Functions Xingru Chen - PowerPoint PPT Presentation

MATH 20: PROBABILITY Generating Functions Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 di distri ribution Random Variable Password Lo Log I In Forget Password XC 2020 di distri ribution Random Variable Expected Value


  1. MATH 20: PROBABILITY Generating Functions Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. di distri ribution Random Variable Password Lo Log I In Forget Password XC 2020

  3. di distri ribution Random Variable Expected Value & Variance Lo Log I In Forget Password XC 2020

  4. Binomial Distribution and Normal Distribution Binomia Bin ial D Dist istrib ibutio ion Norma Nor mal Distribution on ๐น(๐‘Œ) & ๐‘Š(๐‘Œ) ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ 1 ๐‘™ ๐‘ž ! ๐‘Ÿ "#! ๐‘œ๐‘ž = ๐œˆ ๐‘“ # %#& ! /() ! ยง ๐‘” $ ๐‘ฆ = ๐‘œ๐‘ž 1 โˆ’ ๐‘ž = ๐œ ( 2๐œŒ๐œ ยง XC 2020

  5. di distri ribution Random Variable Moments Lo Log I In Forget Password XC 2020

  6. GENERATING FUNCTIONS discrete distribution XC 2020

  7. Moments ยง If ๐‘Œ is a random variable with range ๐‘ฆ * , ๐‘ฆ ( , โ‹ฏ of at most countable size, and the distribution function ๐‘ž = ๐‘ž $ , we introduce the moments of ๐‘Œ , which are numbers defined as follows: ๐œˆ ! = ๐‘™ th moment of ๐‘Œ = ๐น ๐‘Œ ! ! ๐‘ž(๐‘ฆ + ) , -. ๐‘ฆ + = โˆ‘ +,* provided the sum converges. Here ๐‘ž ๐‘ฆ + = ๐‘„(๐‘Œ = ๐‘ฆ + ) . ? ๐œˆ ! = โ‹ฏ XC 2020

  8. ๐‘™ th moment of ๐‘Œ ๐œˆ $ = 1 = &' " ๐‘ž(๐‘ฆ # ) ๐œˆ " = ๐น ๐‘Œ " = * ๐‘ฆ # #$% &' ๐œˆ ! = ๐น 1 = * ๐‘ž(๐‘ฆ # ) ๐œˆ % = โ‹ฏ ? #$% &' ๐œˆ % = ๐น ๐‘Œ = * ๐‘ฆ # ๐‘ž(๐‘ฆ # ) #$% &' ๐œˆ & = โ‹ฏ ๐œˆ ( = ๐น ๐‘Œ ( = * ( ๐‘ž(๐‘ฆ # ) ? ๐‘ฆ # #$% XC 2020

  9. Expected Value & Variance ๐‘™ th moment of ๐‘Œ ๐œˆ " = ๐น ๐‘Œ " &' " ๐‘ž(๐‘ฆ # ) = * ๐‘ฆ # Expe pecte ted Value ue #$% ๐œ & = โ‹ฏ ๐œˆ % = ๐น ๐‘Œ &' = * ๐‘ฆ # ๐‘ž(๐‘ฆ # ) ๐œˆ = โ‹ฏ Variance Va #$% ๐œˆ ( = ๐น ๐‘Œ ( &' ( ๐‘ž(๐‘ฆ # ) = * ๐‘ฆ # #$% XC 2020

  10. Expected Value & Variance ๐‘™ th moment of ๐‘Œ ๐œˆ " = ๐น ๐‘Œ " &' " ๐‘ž(๐‘ฆ # ) = * ๐‘ฆ # Expe pecte ted Value ue #$% ๐œ & = ๐œˆ & โˆ’ ๐œˆ % & ๐œˆ % = ๐น ๐‘Œ &' = * ๐‘ฆ # ๐‘ž(๐‘ฆ # ) ๐œˆ = ๐œˆ % Va Variance #$% ๐œˆ = ๐œˆ % ๐œˆ ( = ๐น ๐‘Œ ( &' ( ๐‘ž(๐‘ฆ # ) = * ๐‘ฆ # #$% XC 2020

  11. Moment Generating Functions ยง We introduce a new variable ๐‘ข, and de fi ne a function ๐‘•(๐‘ข) as follows: Ex Expect cted val alue ๐‘ญ ๐”(๐’€) &' ๐‘“ !( ! ๐‘ž(๐‘ฆ # ) . ๐‘• ๐‘ข = ๐น ๐‘“ !" = โˆ‘ #$% & ๐œš(๐‘ฆ)๐‘›(๐‘ฆ) ยง We call ๐‘•(๐‘ข) the moment generating function for ๐‘Œ , and think of it as a convenient bookkeeping device for "โˆˆ$ describing the moments of ๐‘Œ . &' ๐‘Œ " ๐‘ข " &' ๐น(๐‘Œ " )๐‘ข " &' ๐œˆ " ๐‘ข " Taylor ๐‘• ๐‘ข = ๐น ๐‘“ )* = ๐น = * = * = * Expansion ๐‘™! ๐‘™! ๐‘™! "$! "$! "$! XC 2020

  12. Moment Generating Functions ยง If we differentiate ๐‘•(๐‘ข) ๐‘œ times and then set ๐‘ข = 0 , we get ๐œˆ " . &' ๐œˆ " ๐‘ข " &' ๐‘• ๐‘ข = ๐น ๐‘“ )* = * ๐‘“ )+ ! ๐‘ž(๐‘ฆ # ) = * = ๐‘™! #$% "$! &' ๐œˆ " ๐‘ข " &' ๐‘™! ๐œˆ " ๐‘ข "-, &' ๐œˆ " ๐‘ข "-, &' ๐œˆ " ๐‘ข "-, ๐‘’๐‘ข , ๐‘• ๐‘ข = ๐‘’ , ๐‘’ , ๐‘’ , ๐‘’๐‘ข , * = * ๐‘™! ๐‘™ โˆ’ ๐‘œ ! = * ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = * ๐‘™ โˆ’ ๐‘œ ! | )$! = ๐œˆ , ๐‘™! ๐‘™ โˆ’ ๐‘œ ! "$! "$, "$, "$, ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , XC 2020

  13. Uniform Distribution Ra Random vari riable le range: 1, 2, 3, โ‹ฏ , ๐‘œ ๐‘ž * ๐‘˜ = % distribution function: , Generating funct ction on , 1 *+ ๐œˆ , ๐‘ข , *+ ๐‘œ ๐‘“ )# = 1 ๐‘œ ๐‘“ ) + ๐‘“ () + ๐‘“ .) + โ‹ฏ + ๐‘“ ,) ๐‘• ๐‘ข = ๐น ๐‘“ %& = & ๐‘• ๐‘ข = * ๐‘“ %" ! ๐‘ž(๐‘ฆ ' ) = & = ๐‘™! '() ,(- #$% / " (/ #" -%) ,(/ " -%) . = ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , XC 2020

  14. Uniform Distribution Random Ra vari riable le range: 1, 2, 3, โ‹ฏ , ๐‘œ % distribution function: ๐‘ž * ๐‘˜ = , Generating funct ction on / " (/ #" -%) , ๐‘“ )# = % , ,(/ " -%) . ๐‘• ๐‘ข = โˆ‘ #$% *+ ๐œˆ , ๐‘ข , *+ ๐‘• ๐‘ข = ๐น ๐‘“ %& = & ๐‘“ %" ! ๐‘ž(๐‘ฆ ' ) = & = ๐‘™! Mom Moments '() ,(- ๐œˆ % = ๐‘• 2 0 = % ,&% ( . , 1 + 2 + 3 + โ‹ฏ + ๐‘œ = ๐‘• , 0 = ๐‘’ , ๐œˆ ( = ๐‘• 22 0 = , 1 + 4 + 9 + โ‹ฏ + ๐‘œ ( = % (,&%)((,&%) . = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , 3 XC 2020

  15. Uniform Distribution Ra Random vari riable le range: 1, 2, 3, โ‹ฏ , ๐‘œ % distribution function: ๐‘ž * ๐‘˜ = , Generating funct ction on / " (/ #" -%) , ๐‘“ )# = % , ,(/ " -%) . ๐‘• ๐‘ข = โˆ‘ #$% Mom Moments ๐œˆ % = ๐‘• 2 0 = % ,&% ( . , 1 + 2 + 3 + โ‹ฏ + ๐‘œ = ๐œˆ ( = ๐‘• 22 0 = , 1 + 4 + 9 + โ‹ฏ + ๐‘œ ( = % (,&%)((,&%) . 3 ๐œˆ = ๐œˆ * Expect cted value & variance ce ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ * ( ๐œˆ = ๐œˆ % = ๐‘œ + 1 . 2 , $ -% ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ % ( = %( . XC 2020

  16. Binomial Distribution Random Ra vari riable le range: 0, 1, 2, 3, โ‹ฏ , ๐‘œ , distribution function: ๐‘ž * ๐‘˜ = # ๐‘ž # ๐‘Ÿ ,-# Generating funct ction on , *+ ๐œˆ , ๐‘ข , *+ ๐‘“ )# ๐‘œ ๐‘˜ ๐‘ž # ๐‘Ÿ ,-# = ๐‘• ๐‘ข = ๐น ๐‘“ %& = & ๐‘• ๐‘ข = * ๐‘“ %" ! ๐‘ž(๐‘ฆ ' ) = & = ๐‘™! '() ,(- #$% # (๐‘ž๐‘“ ) ) # ๐‘Ÿ ,-# = (๐‘ž๐‘“ ) + ๐‘Ÿ) , . , , โˆ‘ #$% ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , XC 2020

  17. Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, โ‹ฏ , ๐‘œ , distribution function: ๐‘ž * ๐‘˜ = # ๐‘ž # ๐‘Ÿ ,-# Generating funct ction on # ๐‘ž # ๐‘Ÿ ,-# = (๐‘ž๐‘“ ) + ๐‘Ÿ) , . , , ๐‘“ )# ๐‘• ๐‘ข = โˆ‘ #$% *+ ๐œˆ , ๐‘ข , *+ ๐‘• ๐‘ข = ๐น ๐‘“ %& = & ๐‘“ %" ! ๐‘ž(๐‘ฆ ' ) = & = ๐‘™! Moments Mom '() ,(- ๐œˆ % = ๐‘• 2 0 = ๐‘œ(๐‘ž๐‘“ ) + ๐‘Ÿ) ,-% ๐‘ž๐‘“ ) | )$! = ๐‘œ๐‘ž . ๐œˆ ( = ๐‘• 22 0 = ๐‘œ ๐‘œ โˆ’ 1 ๐‘ž ( + ๐‘œ๐‘ž . ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , XC 2020

  18. Binomial Distribution Ra Random vari riable le range: 0, 1, 2, 3, โ‹ฏ , ๐‘œ , distribution function: ๐‘ž * ๐‘˜ = # ๐‘ž # ๐‘Ÿ ,-# Generating funct ction on # ๐‘ž # ๐‘Ÿ ,-# = (๐‘ž๐‘“ ) + ๐‘Ÿ) , . , , ๐‘“ )# ๐‘• ๐‘ข = โˆ‘ #$% Mom Moments ๐œˆ % = ๐‘• 2 0 = ๐‘œ๐‘ž . ๐œˆ ( = ๐‘• 22 0 = ๐‘œ ๐‘œ โˆ’ 1 ๐‘ž ( + ๐‘œ๐‘ž . ๐œˆ = ๐œˆ * Expect cted value & variance ce ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ * ๐œˆ = ๐œˆ % = ๐‘œ๐‘ž. ( ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ % ( = ๐‘œ๐‘ž(1 โˆ’ ๐‘ž) . XC 2020

  19. Geometric Distribution Ra Random vari riable le range: 1, 2, 3, โ‹ฏ , ๐‘œ distribution function: ๐‘ž * ๐‘˜ = ๐‘Ÿ #-% ๐‘ž *+ ๐œˆ , ๐‘ข , *+ ๐‘• ๐‘ข = ๐น ๐‘“ %& = & = ๐‘“ %" ! ๐‘ž(๐‘ฆ ' ) = & ๐‘™! Generating funct ction on '() ,(- 4/ " , %-5/ " . ๐‘“ )# ๐‘Ÿ #-% ๐‘ž = ๐‘• ๐‘ข = โˆ‘ #$% Moments Mom ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , 4/ " ๐œˆ % = ๐‘• 2 0 = % 4 . (%-5/ " ) $ | )$! = 4/ " &45/ $" ๐œˆ ( = ๐‘• 22 0 = %&5 4 $ . (%-5/ " ) % | )$! = Expect cted value & variance ce ๐œˆ = ๐œˆ * ๐œˆ = ๐œˆ % = 1 ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ * ( ๐‘ž . ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ % ( = 5 4 $ . XC 2020

  20. Poisson Distribution Ra Random vari riable le range: 0, 1, 2, 3, โ‹ฏ , ๐‘œ ๐‘ž * ๐‘˜ = ๐‘“ -6 6 ! distribution function: #! Generating funct ction on ๐‘“ )# ๐‘“ -6 6 ! (6/ " ) ! #! = ๐‘“ -6 โˆ‘ #$% = ๐‘“ 6(/ " -%) . , , ๐‘• ๐‘ข = โˆ‘ #$% #! Mom Moments ๐œˆ % = ๐‘• 2 0 = ๐‘“ 6(/ " -%) ๐œ‡๐‘“ ) | )$! = ๐œ‡ . ๐œˆ ( = ๐‘• 22 0 = ๐‘“ 6(/ " -%) ๐œ‡ ( ๐‘“ () + ๐œ‡๐‘“ ) | )$! = ๐œ‡ ( + ๐œ‡ . *+ ๐œˆ , ๐‘ข , *+ ๐‘• ๐‘ข = ๐น ๐‘“ %& = & ๐‘“ %" ! ๐‘ž(๐‘ฆ ' ) = & = ๐‘™! '() ,(- Expect cted value & variance ce ๐œˆ = ๐œˆ % = ๐œ‡. ๐œ ( = ๐œˆ ( โˆ’ ๐œˆ % ( = ๐œ‡. ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , XC 2020

  21. Unifor Un orm ๐‘„ ๐‘Œ = ๐‘™ = 1 ๐‘Š ๐‘Œ = " ! #* ๐น ๐‘Œ = "-* ( , ๐‘œ *( Bin Binomia ial ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐น ๐‘Œ = ๐‘œ๐‘ž , ๐‘Š ๐‘Œ = ๐‘œ๐‘ž๐‘Ÿ ๐‘™ ๐‘ž ! ๐‘Ÿ "#! Geometric Ge ๐น ๐‘Œ = * ๐‘Š ๐‘Œ = *#/ / , ๐‘„ ๐‘ˆ = ๐‘œ = ๐‘Ÿ "#* ๐‘ž / ! Po Poisson ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐น ๐‘Œ = ๐œ‡ , ๐‘Š ๐‘Œ = ๐œ‡ ๐‘™! ๐‘“ #0 XC 2020

  22. Unifor Un orm ๐‘• ๐‘ข = ๐‘“ 1 (๐‘“ "1 โˆ’ 1) ๐‘„ ๐‘Œ = ๐‘™ = 1 ๐‘œ(๐‘“ 1 โˆ’ 1) ๐‘œ Bin Binomia ial ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐‘• ๐‘ข = (๐‘ž๐‘“ 1 + ๐‘Ÿ) " ๐‘™ ๐‘ž ! ๐‘Ÿ "#! Geometric Ge ๐‘ž๐‘“ 1 ๐‘„ ๐‘ˆ = ๐‘œ = ๐‘Ÿ "#* ๐‘ž ๐‘• ๐‘ข = 1 โˆ’ ๐‘Ÿ๐‘“ 1 Poisson Po ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐‘• ๐‘ข = ๐‘“ 0(3 . #*) ๐‘™! ๐‘“ #0 XC 2020

  23. XC 2020

  24. Po Poisson ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐‘• ๐‘ข = ๐‘“ 0(3 . #*) . ๐‘™! ๐‘“ #0 ๐‘• , 0 = ๐‘’ , = ๐‘’๐‘ข , ๐‘• ๐‘ข | )$! = ๐œˆ , ๐น ๐‘Œ . = ๐œˆ . = ๐‘’ . ๐‘’๐‘ข . ๐‘• ๐‘ข | )$! = ๐‘’ . ๐‘’๐‘ข . ๐‘“ 6(/ " -%) | )$! = ๐‘’ ๐‘’๐‘ข ๐‘“ 6(/ " -%) ๐œ‡ ( ๐‘“ () + ๐œ‡๐‘“ ) | )$! = ๐‘“ 6(/ " -%) ๐œ‡ . ๐‘“ .) + 3๐œ‡ ( ๐‘“ () + ๐œ‡๐‘“ ) | )$! = ๐œ‡ . + 3๐œ‡ ( + ๐œ‡ XC 2020

Recommend


More recommend