a generating function for left keys and its associated
play

A generating function for left keys and its associated - PowerPoint PPT Presentation

A generating function for left keys and its associated representation theory Ti esrever dna ti pilf, nwod gniht ym tup Sarah Mason and Dominic Searles Wake Forest University, University of Otago AMS Fall Southeastern Sectional Meeting


  1. A generating function for left keys and its associated representation theory “Ti esrever dna ti pilf, nwod gniht ym tup” Sarah Mason and Dominic Searles Wake Forest University, University of Otago AMS Fall Southeastern Sectional Meeting Gainesville, FL November, 2019

  2. Objects of study Sym ⊂ QSym ⊂ Q [ x 1 , x 2 , . . . x n ] ◮ Sym: polynomials s.t. the coefficient of x α 1 1 x α 2 2 · · · x α k equals k the coefficient of x α 1 σ (1) x α 2 σ (2) · · · x α k σ ( k ) for σ ∈ S n f 1 ( x 1 , x 2 , . . . , x n ) = x 3 1 x 5 2 + x 5 1 x 3 2 + x 3 1 x 5 3 + x 5 1 x 3 3 + . . . ◮ QSym: polynomials s.t. the coefficient of x α 1 1 x α 2 2 · · · x α k k i 2 · · · x α k equals the coefficient of x α 1 i 1 x α 2 for i 1 < i 2 < · · · < i k . i k f 2 ( x 1 , x 2 , . . . , x n ) = x 3 1 x 5 2 x 0 3 + x 3 1 x 0 2 x 5 3 + . . . + x 0 1 x 3 2 x 5 3 + . . . ◮ Q [ x 1 , x 2 , . . . ]: polynomials in n variables f 3 ( x 1 , x 2 , . . . , x n ) = x 1 x 2 4 + 2 x 7 3 x 2 8 + . . .

  3. Bases ◮ Bases for Sym: (indexed by partitions) monomial, power sum, elementary, homogeneous, Schur, . . . ◮ Bases for QSym: (indexed by compositions) monomial, fundamental (Gessel), quasisymmetric Schur (HLMvW), dual immaculate (BBSSZ), . . . ◮ Bases for Q [ x 1 , x 2 , . . . ]: (indexed by weak compositions) monomials, key polynomials (Lascoux-Sch¨ utzenberger), Demazure atoms (M), slide polynomials (Assaf-Searles), . . . ⋆ Many of these have combinatorial descriptions in terms of tableaux-like diagrams. 5 6 5 6 6 4 3 4 3 , , , , · · · 1 1 3 3 3 5 4 2 1 2 4 2 1 1

  4. What happens when you flip the variables? Symmetric functions (such as Schur functions) stay the same. s λ ( x 1 , x 2 , . . . , x n ) = s λ ( x n , x n − 1 , . . . , x 2 , x 1 ) Decreasing Increasing 4 5 7 5 5 2 4 4 8 7 6 3 1 2 3 6 “Plays” well together “Plays” well together Nonsymmetric Macdonald Quasisymmetric Schur ↔ Young quasisymmetric Schur Demazure atoms dual immaculate key polynomials

  5. Macdonald polynomials P λ ( X ; q , t ) (I.G. Macdonald, 1988) 1. (Triangular). P λ = m λ + lower terms in dominance order. 2. (Orthonormal). � P λ , P µ � q , t = 0 if λ � = µ, where ℓ ( λ ) 1 − q λ i � � p λ , p µ � q , t = δ λµ z λ 1 − t λ i . i =1 ◮ Schur positivity conjecture ◮ Connection to symmetric function bases (specializations) ◮ All Lie types - alcove walks (Ram-Yip) ◮ Geometry of Hilbert Schemes (Mark Haiman)

  6. Theorem (Haglund, Haiman, Loehr (2008)) ˜ � x σ q inv( σ,µ ) t maj( σ,µ ) . H µ ( X ; q , t ) = σ : µ → Z + 5 8 weight = x 2 1 x 2 x 2 3 x 5 x 6 x 2 8 q 5 t 4 � 2 6 1 3 3 8 1 Nonsymmetric Macdonald polynomials (Cherednik, Macdonald, Opdam-Heckman) ◮ triangularity and orthogonality ◮ Eigenfunctions ◮ Symmetrize to Macdonald polynomials

  7. Specializations of nonsymmetric Macdonald polynomials E µ ( X ; q − 1 , t − 1 ) � � (1 − q l ( u )+1 t a ( u ) ) P λ ( X ; q , t ) = u (1 − q l ( u )+1 t a ( u ) ) � u inc ( a )= λ specializes to: � s λ ( X ) = E a ( X ; ∞ , ∞ ) , inc ( a )= λ where the E a ( X ; ∞ , ∞ ) = A a ( X ) are the “Demazure atoms”. Definition The quasisymmetric Schur function QS α is the sum of Demazure atoms over all weak compositions collapsing to α : � QS α = A a . a + = α QS 12 = A 120 + A 102 + A 012

  8. Combinatorial description A semi-standard reverse composition tableau (SSRCT) of shape α is a filling of α (French notation) such that: 1. Row entries weakly decrease from left to right. 2. Entries in the leftmost column strictly increase bottom to top. 3. (Triple Rule) For a triple of entries as shown below, a ≤ b ⇒ c < b : a c b Definition The quasisymmetric Schur function QS α is defined by � X T QS α ( X ) = T ∈ SSRCT ( α )

  9. Quasisymmetric Schur functions refine Schur functions � s λ = QS α inc ( α )= λ s 322 = QS 322 + QS 232 + QS 232 1 1 1 1 4 2 4 4 3 5 4 3 5 2 RSSYT (3 , 2 , 2) SSRCT (2 , 3 , 2) ( ⋆ ) If a symmetric function is quasisymmetric Schur-positive, then it is Schur positive!

  10. Young quasisymmetric Schur functions (flip and reverse) A semi-standard composition tableau (SSCT) of shape α is a filling of α (French notation) such that: 1. Row entries weakly increase from left to right. 2. Entries in the leftmost column strictly increase bottom to top. 3. (Triple Rule) Definition (Luoto, Mykytiuk, van Willigenburg) The Young quasisymmetric Schur function YS α is defined by � X T . YS α ( X ) = T ∈ SSCT ( α ) YS α ( x 1 , x 2 , . . . , x n ) = QS rev ( α ) ( x n , x n − 1 , . . . , x 2 , x 1 )

  11. Creation operators ↔ NSym ↔ dual immaculates A semi-standard immaculate tableau (SSIT) of shape α is a filling of α (French notation) such that: 1. Row entries weakly increase from left to right. 2. Entries in the leftmost column strictly increase bottom to top. Definition (Berg, Bergeron, Saliola, Serrano, Zabrocki) The dual immaculate quasisymmetric function is defined by: � x F . D α = F ∈ SSIT ( α ) 3 3 3 3 3 3 2 2 2 1 1 1 2 1 3 D 212 ( x 1 , x 2 , x 3 ) = x 2 1 x 2 x 2 3 + x 1 x 2 2 x 2 3 + x 1 x 2 x 3 3

  12. Theorem (Allen-Hallam-M) The dual immaculate quasisymmetric functions expand positively into the Young quasisymmetric Schur basis. A polynomial analogue of dual immaculates... ◮ Looking for a polynomial analogue of the dual immaculate quasisymmetric functions ◮ Nothing we tried “played nicely” with the other polynomial bases ◮ Had to look to the flipped and reversed picture! (Quasisymmetric Schurs play well with key polynomials, Demazure atoms, etc...Young quasisymmetric Schurs do not.)

  13. Definition (M-Searles) The reverse dual immaculate quasisymmetric function is defined by: ˆ � x F , D α = F ∈ RSSIT ( α ) where RSSIT ( α ) is the fillings of α whose entries: 1. weakly decrease from left to right 2. leftmost column entries strictly increase from bottom to top. ˆ D α ( x 1 , x 2 . . . , x n ) = D rev ( α ) ( x n , . . . , x 2 , x 1 ) Proposition (M-Searles) The reverse dual immaculate quasisymmetric functions expand positively into the quasisymmetric Schur basis.

  14. Key polynomials (Demazure characters) Let a be a weak (allowing zeros) composition. Then the key polynomial κ a is given by: � κ a = A b , b ≤ a under the Bruhat order. Definition A key is a semi-standard Young tableau whose entries in the ( j + 1) th column are a subset of the entries in the j th column. key (1 , 0 , 3 , 2) = 4 3 4 1 3 3

  15. K + ( 5 7 ) = 8 8 K − ( 5 7 ) = 5 5 3 6 8 6 6 8 3 6 8 3 3 5 2 4 5 5 5 5 2 4 5 2 2 3 1 1 3 4 4 4 4 4 1 1 3 4 1 1 1 1 Theorem (Lascoux-Sch¨ utzenberger) � x T κ a = T ∈ SSYT ( a ) K + ( T ) ≤ key ( a )

  16. A 210 2 � ❅ κ 102 = A 210 + 1 1 � ❅ � ❅ A 120 + A 201 + A 102 A 120 A 201 3 2 1 1 1 2 ❅ � ❅ � ❅ � � ❅ � ❅ 2 + 3 3 + 3 1 3 1 3 1 2 2 2 A 102 A 201 ❅ � ❅ � ❅ � 3 A 021 2 3

  17. Young key polynomials Let a be a weak (allowing zeros) composition. Then the Young key polynomial ˆ κ a is given by: ˆ κ a ( x 1 , x 2 , . . . , x n ) = κ rev ( a ) ( x 1 , x 2 , . . . , x n ) . Theorem (M-Searles) � x T ˆ κ a = T ∈ SSYT ( a ) K − ( T ) ≥ key ( a ) ⋆ The roles of left K − ( T ) and right K + ( T ) keys are switched when the variables are reversed.

  18. Young key module ◮ ˆ B = { lower triangular matrices }   0 0 0 x 1 . . . 0 x 2 0 . . . 0    . .  ◮ x = . .   . .     0 0 0 . . . x n − 1   0 . . . 0 0 x n ◮ x acts on ˆ B by left multiplication ◮ Young key module ˆ κ a = trace of the action of x on ˆ K a : ˆ K a . ◮ Parallels the generalized flagged Schur module and key module construction in “Key polynomials and a flagged Littlewood-Richardson Rule” by Reiner and Shimozono.

  19. Young key module ◮ diagram D - finite subset of P × P ◮ row group R ( D ) - permutations fixing row entries ◮ column group C ( D ) - permutations fixing column entries � e T = sgn ( β ) T αβ , α ∈ R ( D ) β ∈ C ( D ) where T αβ means apply α to T and then apply β to the result. T = 2 e T = 2 + 2 − 2 , + . . . 4 2 4 2 2 4 3 2 3 3 3 4

  20. The Young key module ˆ K a is the ˆ B -module with basis { e T ( u ) } u ∈ ˆ W ( a ) , W ( a ) is the set of all words u = · · · u (2) u (1) such that: where ˆ ◮ | u ( i ) | = a i ◮ u ↔ ( P , std ( key ( a ))) under RSK ◮ Each entry in u ( i ) is greater than or equal to i Theorem (M-Searles) The Young key polynomial ˆ κ a is the trace of x acting on the Young key module ˆ K a .

  21. Further directions ◮ Fill out the picture of flipping and reversing for other families of polynomials ◮ Connection to nonsymmetric Macdonald polynomials, Schubert polynomials ◮ Understand the creation operator picture in the dual of the reverse dual immaculates “Is it worth it? Let me work it. Put my thing down, flip it and reverse it. Ti esrever dna ti pilf, nwod gniht ym tup.” - Missy Elliot

Recommend


More recommend