Interacting Dark Matter Markus R. Mosbech Linear Modeling of Baryon-Dark Matter Interactions with CLASS Introducing a Novel Resonance Interaction Type Markus Rasmussen Mosbech February 21, 2020
Interacting Dark Matter Markus R. Mosbech Overview 1 Evolution 2 Dark Matter Interactions 3 Numerics 4 Results
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Primordial perturbations State University). Visualizations by and Anatoly Klypin (New Mexico Kravtsov (The University of Chicago) Supercomputer Applications by Andrey at the National Center for Figure: simulations were performed Pressure Gravity Structure Formation Dark Results Numerics Interactions DM Evolution Mosbech Markus R. Matter Andrey Kravtsov.
Interacting Dark Matter Markus R. Mosbech Evolution DM Interactions Numerics Results The CMB spectrum Observable Recombination Linear Figure: by ESA/Planck collaboration
Interacting Dark Matter Markus R. Mosbech Evolution DM Interactions Numerics Results The CMB spectrum Observable Recombination Linear Figure: by ESA/Planck collaboration
Interacting Dark Matter Markus R. Mosbech Evolution DM Interactions Numerics Results The CMB spectrum Observable Recombination Linear × 10 − 9 4 l ( l + 1) Cl TT 3 2 1 0 0 500 1000 1500 2000 2500 l
Interacting Small space in Fourier Advantages Dark Early from average deviation universe Perturbation Theory Results Numerics Interactions DM Evolution Mosbech Markus R. Matter 10 4 | δ b | ( k = 0 . 5 Mpc − 1 ) 10 2 10 0 10 − 2 10 − 6 10 − 5 10 − 4 10 − 3 10 − 2 a
Interacting Small space in Fourier Advantages Dark Early from average deviation universe Perturbation Theory Results Numerics Interactions DM Evolution Mosbech Markus R. Matter 10 4 | δ b | ( k = 0 . 5 Mpc − 1 ) 10 2 10 0 10 − 2 10 − 6 10 − 5 10 − 4 10 − 3 10 − 2 a
Interacting Small space in Fourier Advantages Dark Early from average deviation universe Perturbation Theory Results Numerics Interactions DM Evolution Mosbech Markus R. Matter 10 4 | δ b | ( k = 0 . 5 Mpc − 1 ) 10 2 10 0 10 − 2 10 − 6 10 − 5 10 − 4 10 − 3 10 − 2 a
Interacting Numerics Photons Baryons Dark Matter Dark Results The Boltzmann Equations Interactions DM Evolution Mosbech Markus R. Matter δ cdm = − θ cdm + 3 ˙ ˙ Φ , θ cdm = − ˙ a ˙ aθ cdm + k 2 Ψ .
Interacting Numerics Dark Baryons Dark Matter The Boltzmann Equations Results Photons Interactions Evolution Mosbech Markus R. Matter DM δ b = − θ b − 3 ˙ ˙ Φ , θ b = − ˙ a ˙ aθ b + c 2 s k 2 δ b + 4¯ ρ γ an e σ T ( θ γ − θ b ) + k 2 Ψ . 3¯ ρ b
Interacting Numerics Photons Dark Dark Matter The Boltzmann Equations Results Baryons Interactions DM Evolution Mosbech Markus R. Matter δ γ = − 4 ˙ 3 θ γ + 4 ˙ Φ � 1 � ˙ θ γ = k 2 4 δ γ − σ γ + an e σ T ( θ b − θ γ ) + k 2 Ψ
Interacting Results Dark Cold dark matter Baryons Photons Temperature EDGES Numerics Interactions DM Evolution Mosbech Markus R. Matter T b 10 4 T γ 10 3 T [K] 10 2 10 1 10 0 10 − 4 10 − 3 10 − 2 10 − 1 10 0 a
Interacting Results Dark Cold dark matter Baryons Photons Temperature EDGES Numerics Interactions DM Evolution Mosbech Markus R. Matter T b 10 4 T γ 10 3 T [K] 10 2 10 1 10 0 10 − 4 10 − 3 10 − 2 10 − 1 10 0 a
Interacting Results Dark Cold dark matter Baryons Photons Temperature EDGES Numerics Interactions DM Evolution Mosbech Markus R. Matter T b 10 4 T γ 10 3 T [K] 10 2 10 1 10 0 10 − 4 10 − 3 10 − 2 10 − 1 10 0 a
Interacting Results Dark Cold dark matter Baryons Photons Temperature EDGES Numerics Interactions DM Evolution Mosbech Markus R. Matter T b 10 4 T γ 10 3 T [K] 10 2 10 1 10 0 10 − 4 10 − 3 10 − 2 10 − 1 10 0 a
Interacting Numerics Nonzero temperature Velocity dependence Nonzero interaction Basic Premise Dark Results Interactions DM Evolution Mosbech Markus R. Matter χ χ ∆ p p
Interacting Numerics Nonzero temperature Velocity dependence Nonzero interaction Basic Premise Dark Results Interactions DM Evolution Mosbech Markus R. Matter χ χ ∆ p p
Interacting Numerics Nonzero temperature Velocity dependence Nonzero interaction Basic Premise Dark Results Interactions DM Evolution Mosbech Markus R. Matter χ χ ∆ p p
Interacting Numerics Dark Dark Matter Baryons Modifjed Boltzmann equations Results Interactions DM Evolution Mosbech Markus R. Matter δ b = − θ b − 3 ˙ ˙ Φ , θ b = − ˙ a ˙ aθ b + c 2 s k 2 δ b + 4¯ ρ γ an e σ T ( θ γ − θ b ) + k 2 Ψ . 3¯ ρ b + ρ χ R χ ( θ χ − θ b ) ρ b aρ b R χ = � σv � F He m χ + m H
Interacting Numerics Dark Baryons Modifjed Boltzmann equations Results Dark Matter Interactions Evolution Mosbech Markus R. Matter DM δ cdm = − θ cdm + 3 ˙ ˙ Φ , θ cdm = − ˙ a ˙ aθ cdm + k 2 Ψ + R χ ( θ b − θ χ ) aρ b R χ = � σv � F He m χ + m H
Interacting Numerics rms Dipole Coulomb Dark Results Power Law Interaction Interactions DM Evolution Mosbech Markus R. Matter T b T b ref. 10 3 T χ T γ T [K] 10 1 10 − 1 10 − 4 10 − 3 10 − 2 10 − 1 10 0 a � T b � n +1 + V 2 ac n ρ b σ 0 + T χ 2 R χ = F He m χ + m H 3 m H m χ
Interacting Dark rms Dipole Coulomb Power Law Interaction Results Numerics Interactions DM Evolution Mosbech Markus R. Matter 10 4 10 2 T [K] 10 0 T b T b ref. 10 − 2 T χ 10 − 4 T γ 10 − 4 10 − 3 10 − 2 10 − 1 10 0 a � T b � n +1 + V 2 ac n ρ b σ 0 + T χ 2 R χ = F He m χ + m H m H m χ 3
Recommend
More recommend