Lecture Plan: 1) Cosmic Ray acceleration- accelerated spectrum, efficient accelerators, nuclei friendly PROBLEMS 2) Cosmic Ray proton + nuclei interaction rates in extragalactic radiation fields PROBLEMS 3) Cosmic Ray propagation through Galactic and extragalactic magnetic fields Andrew Taylor
When E -2 and when not? Andrew Taylor
Strong shock wave Shock Acceleration propagating at supersonic velocity (sound speed depends on temperature) u 1 u 2 upstream downstream E 0 1 , µ 0 E 1 , µ 1 1 ✓ 1 + β µ 1 ◆ E 2 = E 1 Andrew Taylor E 0 1 , µ 0 1 + β µ 2 E 2 , µ 2 2
Fermi Acceleration (more) Energy Number ∆ E = 4v 3c = 4 ∆ N = − 4v 3c = − 4 (energy gain) (advection 3 β 3 β downstream) E N ✓ ◆ ✓ ◆ 1 + 4 1 − 4 E 1 = 3 β E 0 N 1 = 3 β N 0 ◆ n ◆ n ✓ ✓ 1 + 4 1 + 4 3 β 3 β N n = N 0 E n = E 0 So n~1/ β crossings are needed SNRs have v sh ~10 3 km s -1 Andrew Taylor before the particle population is so β ~10 -2 significantly altered
Fermi Acceleration (more) Energy Number β ~10 -2 Andrew Taylor
Fermi Acceleration (more) So, ◆ n ✓ 1 − 4 β / 3 ∆ N ∆ E = N 0 1 + 4 β / 3 E 0 ≈ N 0 ( 1 + 4 β / 3 ) − 2n E 0 ≈ N 0 E 0 E − 2 Andrew Taylor
Stochastic Acceleration/Propagation D xx D pp ≈ β 2 scat p 2 β scat β scat β scat β scat β scat β scat Andrew Taylor
x Random Walks γ ( t + 1 ) = t ! t Z ∞ x t e − x dx γ ( t + 1 ) = 0 f ( x , t ) = γ ( t + 1 ) / [ γ ([ t − x ] / 2 + 1 ) γ ([ x + t ] / 2 + 1 )] / ( 2 t ) e − x 2 / ( 2t ) f ( x , t ) ≈ [ π / ( t / 2 )] 1 / 2 Andrew Taylor
Random Walks dN Spatial spread: dx ∝ e − x 2 / 4D xx t dN dx ∝ e − x 2 / 4c 2 t scat t Momentum spread: ∆ E ∝ β E dN dp ∝ e − (ln p ) 2 / 4 ( D pp / p 2 ) t dN dp ∝ e − (ln p ) 2 / 4 ( t / t acc ) Andrew Taylor
Gamma-Ray Probes of Particle Acceleration –Flaring Blazars (Mrk 501) No energy losses astro-ph/1107.1879, Tramacere et al. Andrew Taylor 10
Fermi (Second Order) Acceleration � ∂ f p τ esc ( p ) + Q f ∂ t = r p · ( D pp r p f ) � τ loss ( p ) f � p 2 Acceleration Radiative Escape Source term Losses Andrew Taylor
Stochastic Particle Acceleration- Random Walk Result (Spatial) r · ( D xx r f ) = δ ( r ) ∂ 2 f ∂ f ∂ r 2 + 2 ∂ r = δ ( r ) r f = r − α − α ( − α − 1 ) − 2 α = 0 α ( α − 1 ) = 0 Andrew Taylor
Stochastic Particle Acceleration- Random Walk Result (Momentum) � ∂ f p τ esc ( p ) + Q f ∂ t = r p · ( D pp r p f ) � τ loss ( p ) f � p 2 Delta injection Steady state No losses D pp ∝ p q ∂ 2 f ∂ p 2 + ( 2 + q ) ∂ p − 4 τ acc ∂ f f p 2 = δ ( p ) τ esc p For f = p − α and q = 2 α 2 − 3 α − 4 τ acc = 0 Andrew Taylor τ esc
Stochastic Particle Acceleration- Random Walk Result (Momentum) α 2 − 3 α − 4 τ acc = 0 τ esc ◆ 1 / 2 ✓ 4 τ acc α = 3 + 9 2 ± 4 τ esc τ acc = 1 τ esc f = dN d 3 p = p − 4 Andrew Taylor
Fermi (First Order) Acceleration Time t acc = E ∆ t cycle ∆ E cycle Transport of particles in each region is dictated by competition between diffusion and advection downstream upstream t di ff = R 2 R t adv = v adv D xx Balancing these timescales D xx Andrew Taylor t resid = ( c β sh ) 2
Fermi (First Order) Acceleration Time t acc = E ∆ t cycle ∆ E cycle D xx t resid = ( c β sh ) 2 However, during the time it takes advection to dominate over diffusion, the particle will have crossed the shock times 1 / β D xx ∆ t cycle = ( c 2 β sh ) Andrew Taylor
Fermi (First Order) Acceleration Time t acc = E ∆ t cycle ∆ E cycle E 0 1 , µ 0 D xx E 1 , µ 1 1 ∆ t cycle = ( c 2 β sh ) E 0 1 , µ 0 E 2 , µ 2 2 ∆ E cycle = E β sh ✓ 1 + β µ 1 ◆ E 2 = E 1 1 + β µ 2 ( c β sh ) 2 = t scat D xx t acc = β 2 sh Andrew Taylor
Fermi (Second Order) Acceleration Time t acc = E ∆ t scat ∆ E scat ∆ E scat = E β 2 scat t acc = t scat β 2 scat Andrew Taylor
Efficient Accelerators … .what means efficient? Andrew Taylor
Particle Acceleration in AGN R 2 t acc = η R lar t esc . = c β 2 η cR lar R lar = β AM Hillas (1984) Maximum energy η R (Hillas criterion) ✓ ◆ ✓ 1 mG ◆ E R lar ( E , B ) = 10 pc 10 EeV B Andrew Taylor
Compactness of UHECR Sources: Proton/Nuclei Synchrotron Losses AM Hillas (1984) assumed in above plot η ≈ 1 Andrew Taylor
Particle Acceleration with Cooling ✓ m e t acc = η R lar ◆ 9 t cool = t lar E sync c β 2 8 πα γ ≈ 9 4 η − 1 β 2 m e E sync γ α Maximum synchrotron energy tells us how efficient accelerator is! η < 10 3 Andrew Taylor 22
Emission Site? Cen A ~2 kpc Where are the misaligned (X)HBLs? Hardcastle et al. (1103.1744) η < 10 3 Andrew Taylor 23
Future Probes- Cutoff Region total 1 10 2 bg 10 1 0.1 E e dN/dE e bg dN/dE γ 10 0 0.01 E γ 10 -1 0.001 10 -3 10 -2 10 -1 10 0 10 1 0.001 0.01 0.1 1 10 bg E e E γ B crit = 4 × 10 13 G ✓ B ◆ 10 3 E sync = Γ 2 m e total e γ B crit 10 2 10 1 ◆ dN E γ dN/dE Z ✓ E γ ✓ E γ ◆ dN dN 10 0 E γ E e dE e = E 2 E 2 dE γ tot dE γ dE e 10 -1 e e 10 -2 10 -3 Andrew Taylor Possibility to probe cutoff region 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 E γ 24
Nuclei Friendly Accelerators Andrew Taylor
UHECR Air Showers Andrew Taylor
UHECR Air Showers Andrew Taylor
Composition Measurements by the PAO Andrew Taylor
Nuclei Transmutation Within their Source 0 1500 3000 4500 Time [Myr] Andrew Taylor
IMPLICATIONS for UHECR Sources Andrew Taylor
IMPLICATIONS for UHECR Sources Photo-disintegration threshold: , where Since, , ergo.... Andrew Taylor A similar expression holds for TeV photon transparency
IMPLICATIONS for UHECR Sources Since, Only heavily sub-Eddington power objects need apply! IF magnetic + photon luminosity are in equipartition: Requiring, to ensure safe passage. Andrew Taylor OVERALL MESSAGE: Compact Sources Disfavoured
Are there Any Candidate Sources Left? Hillas Diagram Accelerators of Iron nuclei LHC Andrew Taylor
Are there Any Candidate Sources Left? Andrew Taylor
Example Candidate UHECR Source (a Nuclei Friendly Environment) Diagram taken from Ferrari -1998 Stochastic Acceleration in Radio Lobes: for General PROBLEM for Large Accelerators- ACCELERATION TIME Andrew Taylor
Can Centaurus A's Radio Lobes Accelerate UHECR? ( δ B / B 0 ) 2 = 1 (me 1D 3D Yes, but requires: β A = 1 B β A > 0 . 1 p 4 π m p n p c where Andrew Taylor astro-ph/0903.1259, O’Sullivan et al. 36
Diffusion Coefficient • From resonant scattering between particles and magnetic field perturbations With Larmor radius R L B 0 + δB(k) resonance for k ~ R L -1 P ( k ) ∝ k − q Probability to scatter off resonant B 2 ⌧ � D xx R L mode within Larmor period 0 = R L = ( δ B ( k )) 2 kP ( k ) β ∝ p 2 − q Since p 2 ∼ D xx • Bohm -> q=1 β 2 D pp scat • Kolmogorov -> q=5/3 Andrew Taylor • Kraichnan -> q=3/2 D pp ∝ p q • Hard-sphere -> q=2
Particle Transport Equation • Cut-offs arise naturally in the general solution of the transport equation for particles � ∂ f p τ esc ( p ) + Q f ∂ t = r p · ( D pp r p f ) � τ loss ( p ) f � p 2 Acceleration Radiative Escape Source term Losses Andrew Taylor
Cut-off Shape • Interplay of acceleration and cooling defines the value of the cut-off of the primary particles: dN e − ( E e / E max ) β e β e = 2 − q − r ∝ E − Γ e dE e • In the following, demonstrations for this result will be shown for the case of stochastic acceleration scenarios. However, in reality, this result is more general, holding also for shock acceleration scenarios. [see Schlickeisser et al. 1985, Zirakashvili et al. 2007, Stawarz et al. 2008] Andrew Taylor
A Simple Case- q=1, only escape • Bohm diffusion ( q=1 ) + only escape results in simple exponential cutoff. • Some simplifications to the transport equation: � ∂ f p τ esc ( p ) + Q f ∂ t = r p · ( D pp r p f ) � τ loss ( p ) f � p 2 Delta injection Steady state No losses Andrew Taylor
A Simple Case (II)- q=1, only escape • Rearranging the terms (and explicitly stating the dependences from p of the parameters): ✓ ◆ ∂ ∂ f 1 p f τ esc ( p ) ∝ p − 1 p 2 D 0 τ esc ( p ) = δ ( p ) , − p 2 ∂ p p 0 ∂ p ∂ 2 f ✓ ◆ ∂ f ∂ p 2 + 3 1 f = δ ( p ) ∂ p − p D 0 τ 0 Cutoff comes from f ∝ Ae − p / p τ balancing 1 st and 3 rd term Recall generally, β e = 2 − q − r q = 1 , r = 0 , → β e = 1 Andrew Taylor (Note- energy losses for the case will not alter this result) r = 0
Intuitive Insights into Cut-off Shape Origin Consider the steady-state case of diffusion (constant diffusion coefficient) of particles into an absorbing medium f r · ( D xx r f ) � τ ( x ) = δ ( r ) τ ( x ) = τ ∗ ( x / x ∗ ) 2 f ∝ const . For f ∝ e − x / x τ For τ ( x ) = τ ∗ For f ∝ e − ( x / x τ ) 2 τ ( x ) = τ ∗ ( x / x ∗ ) − 2 Andrew Taylor
End of First Lecture Andrew Taylor
Recommend
More recommend