learning to generate maps
play

Learning to Generate Maps from Trajectories Sijie Ruan , Cheng Long, - PowerPoint PPT Presentation

Learning to Generate Maps from Trajectories Sijie Ruan , Cheng Long, Jie Bao, Chunyang Li, Zisheng Yu, Ruiyuan Li, Yuxuan Liang, Tianfu He, Yu Zheng sjruan@stu.xidian.edu.cn Increasing Demands of Accurate & Updated Maps Navigation Route


  1. Learning to Generate Maps from Trajectories Sijie Ruan , Cheng Long, Jie Bao, Chunyang Li, Zisheng Yu, Ruiyuan Li, Yuxuan Liang, Tianfu He, Yu Zheng sjruan@stu.xidian.edu.cn

  2. Increasing Demands of Accurate & Updated Maps Navigation Route Planning & Real-time Scheduling

  3. Traditional Map Data Collecting Methods Low Spatial Coverage On-field Study Dynamic Traffic Status

  4. Crowdsourcing GPS Trajectories GPS Devices Massive Moving Objects Real-time City-wide Map Information

  5. Challenges Positioning Error (~15 meters) Difficult to Distinguish Spatially Close Roads Low Sampling Rate (30s/pt) Ground Truth Map Ambiguous Underlying Traversing Routes

  6. Framework of DeepMG

  7. Geometry Translation (1/2) β€’ Feature Extraction β€’ For each 𝐽 Γ— 𝐾 Region Tile 2Γ—π‘ˆΓ—π‘ˆΓ—π½Γ—πΎ ) Spatial View ( ℝ 11×𝐽×𝐾 ) Transition View ( β„€ 2 1 1 0 0 … neighborhood c 0 0 1 0 (b) Local Incoming Matrix. (c) Local Outgoing Matrix. (a) Transitions S/E at c. Point, Line, Speed, Direction (8 channels) Each grid cell has an incoming and an outgoing matrix

  8. Geometry Translation (2/2) β€’ T2RNet β€’ Transition Embedding β€’ Shared Encoder β€’ Road Region Decoder β€’ Road Centerline Decoder β€’ Optimization β€’ Dice Loss [Milletari F, et al. 2016] β€’ Multi-task Loss Milletari F, et al. β€œ V-net: Fully convolutional neural networks for volumetric medical image segmentation ”. 3DV. 2016.

  9. Topology Construction (1/2) β€’ Graph Extraction β€’ Merge predicted tiles β€’ Extract road segments β€’ Link Generation β€’ For each dead end 𝑓 2 𝑓 1 β€’ Case 1: intersects another edge on the extension πœ„ 𝑃 β€’ Case 2: has smooth transition to the closest dead end of another edge 𝑓 3

  10. Topology Construction (2/2) β€’ Map Refinement β€’ Perform trajectory map matching on the linked map [Yuan J, et al. 2010] β€’ Remove edges and links with low support If the map matching is directly applied… Proposed solution Inferred path 𝑄 1 Real path 𝑓 1 π‘š 1 π‘š 3 𝛽 > 1 𝑄 2 𝑓 2 𝑓 3 π‘š 2 Yuan J, et al. β€œ An Interactive Voting-based Map Matching Algorithm ”. MDM. 2010.

  11. Evaluation β€’ Datasets β€’ Evaluation Metrics β€’ Trajectory β€’ Topological F1 [Biagioni, et al. 2012] β€’ <oid, timestamp, latitude, longitude> β€’ Repeat 𝑂 times β€’ Map a. Select a random starting location β€’ Node: <latitude, longitude> b. Find reachable area within a maximum radius c. Compare generated map with GT using F1 β€’ Edge: <start_node, end_node> β€’ Report the average F1 score Biagioni J, Eriksson J. β€œ Inferring road maps from global positioning system traces: Survey and comparative evaluation ”. Transportation research record. 2012.

  12. Results β€’ Quantitative Comparison TaxiJN (6.5% improvement) TaxiBJ (32.3% improvement) β€’ Visual Comparison

  13. Practice in JD.COM: Resident Area Map Generation from JD Couriers’ Trajectories X

  14. Conclusion β€’ A valuable but challenging task β€’ Position errors β€’ Low sampling rate β€’ Our method β€’ Geometry translation (T2RNet) β€’ Convolutional network: learns the structure of the road network β€’ Auxiliary task: helps the centerline inference β€’ Topology construction (Link + Prune) β€’ Trajectories as transition evidences β€’ Results β€’ Superior than traditional methods β€’ More effective on low-sampling rate datasets

  15. Thanks! JD iCity JD Urban Spatio-Temporal Data Engine (JUST) Ruan S., et al. β€œ Learning to Generate Maps from Trajectories ”. AAAI. 2020.

Recommend


More recommend