learning structural svms with latent variables
play

Learning Structural SVMs with Latent Variables Presented By- - PowerPoint PPT Presentation

Learning Structural SVMs with Latent Variables Presented By- Subhabrata Debnath(Roll- 13111063) Anjan Banerjee(Roll-13111008) Basics Machine Learning Blood Sugar Hyper Pressure Tension 10 15 No 5 5 No 25 25 Yes 30 36


  1. Learning Structural SVMs with Latent Variables Presented By- – Subhabrata Debnath(Roll- 13111063) – Anjan Banerjee(Roll-13111008)

  2. Basics Machine Learning Blood Sugar Hyper Pressure Tension 10 15 No 5 5 No 25 25 Yes 30 36 Yes Y-Values 40 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35

  3. Basics Machine Learning Support Vectors Y 1 w Y 2

  4. Objective Function of SVM s.t.

  5. Objective Function of SVM s.t.

  6. Score Higher the value of W T x,higher the chance of belonging to this class w

  7. Latent Structured SVM Final Objective Function: Non-Convex Objective Function Can be solved by CCCP

  8. Soft-Margin SVM

  9. Soft-Margin SVM s. t.

  10. Soft-Margin SVM

  11. Multiclass SVM w Y3 Y 1 w Y1 Y 2 Y 3 w 2 Y Predicted Class:

  12. Multi-Class SVM s.t. here,

  13. Multi-class SVM • What if we don’t want the same amount of margin for all the classes? • E.g.: Given age, sex of an user and the movie genre, predict the rating(1-5) that the user will give. • Highly Incorrect Class and Lesser Incorrect Class Actual Rating Predicted Loss Rating 5 4 Less 5 1 High

  14. Multi-Class SVM s.t.

  15. Multi-Class SVM s.t.

  16. Structured SVM

  17. Structured SVM

  18. Structured SVM

  19. Structured SVM

  20. Structured SVM

  21. Structured SVM Could have been solved using any convex solver The only problem is the number of classes, hence the number of constraints are exponentially large. e.g. Number of possible parse trees for a given sentence is exponential in the number of words.

  22. Cutting Plane Method However, this method gives a solution of the given convex optimization problem with precision ε. Our Convex Cutting Plane Method W*, ξ i Objective Function

  23. Latent Information Hidden Information present in the training set that can improve our learning Let us denote these hidden/latent information as h i . x i y i h i (given/observed) (hidden/unobserved)

  24. Latent Information Noun Phrase Coreference Problem: Input x: Noun Phrases with edge features Labels y: Clusters Of Noun Phrases Latent Variable h: ‘Strong’ links as trees

  25. Latent Information Noun Phrase Coreference Problem:

  26. Latent Structured SVM Objective function:

  27. Latent Structured SVM Objective function:

  28. Latent Structured SVM Objective function:

  29. Latent Structured SVM Objective function:

  30. Latent Structured SVM Final Objective Function: Non-Convex Objective Function Can’t be solved using Cutting plane

  31. Property Of Concave Property Of Convex Function Function f ( x2 ) >= f ( x1 ) + ( x2 - x1 ) * f’ f ( x1 ) <= f ( x2 ) + ( x1 – x2 ) * f’ ( x2 ) ( x1 ) ) 2 x f(x2) ( ’ f f f(x2) ) 1 x ( ’ f f(x1) f(x1) x1 x1 x2 x2 x

  32. Concave-Convex Procedure

  33. Concave-Convex Procedure

  34. Concave-Convex Procedure

  35. Concave-Convex Procedure Minimize the resulting sum Cutting plane W t+1 Algorithm Iterate till desired precision

  36. Overview of the CCCP • Initialize w 0 repeat – Find h* using the w i – Obtain w i+1 by optimizing the convex function using cutting plane. – Set w i =w i+1 till objective function improves by at least ε

  37. THANK YOU

Recommend


More recommend