kilonova macronova emission from compact binary mergers
play

Kilonova/Macronova Emission from Compact Binary Mergers Masaomi - PowerPoint PPT Presentation

Kilonova/Macronova Emission from Compact Binary Mergers Masaomi Tanaka (Na$onal Astronomical Observatory of Japan) 1 deg ~ 100 galaxies / 1 deg 2 (< 200 Mpc) SDSS 10 deg h:p://www.ligo.org/detec$ons.php Localiza:on ~ 600 deg 2 (~< 10


  1. Kilonova/Macronova Emission from Compact Binary Mergers Masaomi Tanaka (Na$onal Astronomical Observatory of Japan)

  2. 1 deg ~ 100 galaxies / 1 deg 2 (< 200 Mpc) SDSS

  3. 10 deg h:p://www.ligo.org/detec$ons.php

  4. Localiza:on ~ 600 deg 2 (~< 10 deg 2 with Advanced Virgo and KAGRA) 10 deg Detec:on of electromagne:c (EM) counterparts is essen:al - RedshiL (distance) - Host galaxy - Local environment Abbo: et al. 2016, ApJ, 826, L13 see Samaya Nissanke’s talk

  5. Degeneracy between Local environments inclina:on and distance Abbo: et al. 2016, PRL, 116, 241102 Berger 2014 (for short GRBs)

  6. Kilonova/Macronova Emission from Compact Binary Mergers • EM emission from compact binary mergers • Kilonova/macronova emission • Lessons from past observa@ons and prospects for EM follow-up observa@ons

  7. Electromagne@c signature from compact binary merger (NS-NS or BH-NS) • On-axis short GRB Jet ISM Shock (After g low) Optical (ho u rs days) Radio (weeks years) Ejecta ISM Shock Radio (years) obs • Radio aLerglow GRB (t ~ 0.1 1 s) Kilonova Optical (t ~ 1 day) j Mer g er Ejecta Tidal Tail & Disk Wind v ~ 0.1 0.3 c • Op:cal/NIR emission BH “kilonova” or “macronova” Metzger & Berger 2012, ApJ 746, 48 see talks by Nissanke, Piran, Zhang, ...

  8. Short gamma-ray burst (GRBs) Visible Opening angle ~ 10 deg Not visible => probability ~ a few % 20 18 Long 16 Short 14 12 Number 10 8 6 4 2 0 0 5 10 15 20 25 30 35 Opening Angle θ j (degrees) (C) ESO Fong et al. 2014, ApJ, 780, 118

  9. Mass ejec:on from NS mergers - :dal disrup:on - shock hea:ng M ~ 10 -3 - 10 -2 Msun v ~ 0.1 - 0.2 c Rosswog 99, 00, Ruffert & Janka 01 Hotokezaka+13, Bauswein+13 see talks by Rezzolla, Janka, Sekiguchi, ... Hotokezaka+13

  10. 200 Mpc 150 MHz, n = 0.1 cm -3 150MHz, n=0.1cm -3 Radio emission (aLerglow) jet ( 0 ° ) jet (45 ° ) 10 jet (90 ° ) dynamical breakout 1 F ν [mJy] 0.1 mJy 0.1 0.01 0.001 1 10 100 1000 10000 t [day] 150 MHz, n = 0.01 cm -3 150MHz, n=0.01cm -3 jet ( 0 ° ) jet (45 ° ) 10 jet (90 ° ) - Delayed by ~> years dynamical breakout - Too faint? 1 F ν [mJy] 0.1 mJy (low environment density) 0.1 0.01 Nakar & Piran 11 0.001 1 10 100 1000 10000 Hotokezaka & Piran 15 t [day]

  11. Electromagne@c signature from compact binary merger (NS-NS or BH-NS) • On-axis short GRB Jet ISM Shock (After g low) strongly beamed Optical (ho u rs days) Radio (weeks years) (isotropic soL X-ray?) Ejecta ISM Shock Radio (years) obs • Off-axis radio aLerglow GRB (t ~ 0.1 1 s) Kilonova isotropic Optical (t ~ 1 day) j Mer g er Ejecta delayed by ~> 1 yr Tidal Tail & Disk Wind v ~ 0.1 0.3 c • Op:cal/NIR emission BH “kilonova” or “macronova” isotropic short delay Metzger & Berger 2012, ApJ 746, 48

  12. Kilonova/Macronova Emission from Compact Binary Mergers • EM emission from compact binary mergers • Kilonova/macronova emission • Lessons from past observa@ons and prospects for EM follow-up observa@ons

  13. Mass ejec:on from NS mergers - :dal disrup:on - shock hea:ng M ~ 10 -3 - 10 -2 Msun v ~ 0.1 - 0.2 c Rosswog 99, 00, Ruffert & Janka 01 Hotokezaka+13, Bauswein+13 see talks by Rezzolla, Janka, Sekiguchi, ... Hotokezaka+13

  14. Nucleosynthesis in NS merger Korobkin+12

  15. (C) NASA

  16. Nucleosynthesis in NS merger ν e + n -> p + e - higher T n + e + -> ν e + p higher Ye => solar abundances ν (e.g., Wanajo+14, Just+15, Wu+16) see talks by Janka, Sekiguchi, ... n e n p Y e = = 10 -2 n p + n n n p + n n 10 0 solar r-abundance mass-averaged 10 -3 0.1 0.2 0.3 0.4 10 -1 10 -4 mass fraction abundance 10 -5 10 -2 10 -6 10 -3 10 -7 10 -4 0.0 0.1 0.2 0.3 0.4 0.5 10 -8 Y e 0 50 100 150 200 250 mass number 10 0

  17. NS merger as a possible origin of r-process elements Event rate Ejec@on per event R NSM ~ 10 -4 event/yr/Galaxy M ej (r-process) ~ 10 -2 Msun ~ 10 3 Gpc -3 yr -1 ~ 40 GW events yr -1 (w/ Adv. detectors, < 200 Mpc) EM GW Enough to explain the r-process abundance in our Galaxy M(Galaxy, r-process) ~ M ej (r) x (R NSM x t G ) ~ 10 -2 x 10 -4 x 10 10 ~ 10 4 Msun (e.g., Piran+14, Ma:eucci+14, Tsujimoto+14, Cescue+15)

  18. LIGO O1: Limit to the NS merger rate R NSM ~< 10 4 Gpc -3 yr -1 see Laura Nulall’s talk Abbo: et al. (arXiv:1607.07456) O3 O2 O1 Dominik et al. pop syn de Mink & Belczynski pop syn Vangioni et al. r-process Jin et al. kilonova Petrillo et al. GRB Coward et al. GRB Siellez et al. GRB Fong et al. GRB Kim et al. pulsar aLIGO 2010 rate compendium 10 0 10 1 10 2 10 3 10 4 BNS Rate (Gpc − 3 yr − 1 )

  19. Radioac@ve energy => op@cal emission 1 10 100 NS merger days Supernova Metzger+10, MNRAS, 406, 2650 see also Wanajo+14, Lippuner+15, Barnes+16

  20. Supernova vs NS merger Supernova (Type Ia) NS merger > Mass 1.4 Msun 0.01 Msun < Velocity 10,000 km/s 30,000-60,000 km/s > Kine:c energy 10 51 erg (1-5) x 10 50 erg ~ Composi:on Fe-group, Si, S, C, O r-process elements Power source 56 Ni r-process elements

  21. “kilonova/macronova” energy energy Li & Paczynski 98, Metzger+10, deposi:on deposi:on Kasen+13, Barnes & Kasen 13 MT & Hotokezaka 13, MT+14 10 42 ~ 19-20 mag @200 Mpc Luminosity (erg/s) (=> 1m telescope) 10 41 10 40 *Opacity of Fe is assumed 10 39 (b-b transi:ons) Goriely+11

  22. 3D frequency-dependent radia:ve transfer for NS merger MT & Hotokezaka 2013, ApJ, 775, 113 600,000 b-b transi$ons for 90 elements

  23. Opacity 1000 r-process NSM-all 100 NSM-Fe Fe 10 κ (cm 2 g -1 ) 1 0.1 0.01 0.001 5000 10000 15000 MT & Hotokezaka 2013 Wavelength (A) =3 � 1 / 2 � v � 1 / 2 � � � 1 / 2 � M ej κ t peak � 0 . 8 days 0 . 1 cm 2 g � 1 0 . 01 M � 0 . 1 c 8 10 � 0 . 35 � � − 0 . 65 2 � 10 41 erg s − 1 � � 0 . 65 � M ej v L peak � κ 0 . 1 cm 2 g � 1 0 . 01 M � 0 . 1 c 1 x 10 40 10 Similar conclusions by Kasen+13 and Barnes & Kasen 13 with different opacity database (more complete table for a few elements)

  24. Lanthanide => high opacity Lanthanide “Complexity” g i ! C = Π i n i !( g i − n i )! , g: number of sublevels has g = 2(2 l + 1) number of states in a n: number of electrons Number of lines ~ C 2 Kasen+13

  25. Luminosity previous Fe opacity expecta:on (Fe opacity) r-process opacity Barnes & Kasen 13

Recommend


More recommend