Ian Harry
• Why we’re excited by compact binary mergers • Short introduction to gravitational waves and gravitational-wave observatories • Observing compact binary mergers with gravitational-wave facilities • What can we learn from gravitational-wave observations of compact binary mergers?
Image credit: NRAO and Chandra.harvard.edu
0.0 0.5 1.0 1.5 2.0 2.5 Neutron star-white dwarf systems B2303+46 B1911-5958A* J1909-3744 B1855+09 J1802-2124 B1802-07* J1748-2446J(Ter5J)* J1748-2446I(Ter5I)* J1713+0747 J1614-2230 B1516+02B* J1141-6545 J1012+5307 J0751+1807 J0621+1002 J0514-4002A* J0437-4715 J0024-7204H(47TucH)* Double neutron star systems B2127+11comp. B2127+11C B1913+16comp. B1913+16 J1906+0746comp. J1906+0746 J1829+2456comp. J1829+2456 J1811-1736comp. J1811-1736 J1756-2251comp. J1756-2251 B1534+12comp. B1534+12 J1518+4904comp. J1518+4904 J0737-3039B J0737-3039A 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 Neutron star mass [M ] Kiziltan et al. arXiv:1011.4291
0.0 0.5 1.0 1.5 2.0 2.5 Neutron star-white dwarf systems B2303+46 B1911-5958A* J1909-3744 B1855+09 J1802-2124 B1802-07* J1748-2446J(Ter5J)* J1748-2446I(Ter5I)* J1713+0747 J1614-2230 B1516+02B* J1141-6545 J1012+5307 J0751+1807 J0621+1002 J0514-4002A* J0437-4715 83 binary neutron star mergers in our galaxy every 1 million years J0024-7204H(47TucH)* Double neutron star systems B2127+11comp. B2127+11C B1913+16comp. B1913+16 J1906+0746comp. J1906+0746 J1829+2456comp. J1829+2456 J1811-1736comp. J1811-1736 J1756-2251comp. J1756-2251 B1534+12comp. B1534+12 J1518+4904comp. J1518+4904 J0737-3039B J0737-3039A 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 Neutron star mass [M ] Kalogera et al. ApJ. 601, L179 (2004)
• Binary pulsar PSR1913+16 o Pulsar provides a very accurate clock o Ideal “laboratory” for testing general relativity o Binary is losing energy as gravitational waves at precisely the rate predicted by general relativity 7 Figure from Weisberg+Taylor (2004).
Low mass X-ray binary (LMXRB) High mass X-ray binary (HMXRB) Image credit: ESA (left) NASA/ESA/Felix Mirabel (right)
Image credit: J. Orosz
Farr et al. ApJ 741, 103
Abbott et al. CQG 27, 173001 (2010)
Simulation courtesy of the Simulating 13 eXtreme Spacetimes (SXS) collaboration
14
15
16
17
18
LIGO Hanford, WA LIGO Livingston, LA Virgo Cascina Italy 19
• Initial LIGO operated between 2002-2010 • Initial Virgo between 2007-2011 • No observations were made • Advanced LIGO will become is operational this year • Advanced Virgo will follow next year • At design sensitivity will be 10x more sensitive o 10x distance = 1000x more volume • Observatories in Japan and India hope to join in the 2020+ timescale. • The first direct observations of gravitational wave sources from colliding black holes and/or neutron stars are expected soon! 20
Advanced LIGO Advanced Virgo − 21 − 21 10 10 Early (2015, 40 − 80 Mpc) Early (2016 − 17, 20 − 60 Mpc) Mid (2016 − 17, 80 − 120 Mpc) Mid (2017 − 18, 60 − 85 Mpc) strain noise amplitude (Hz − 1/2 ) strain noise amplitude (Hz − 1/2 ) Late (2017 − 18, 120 − 170 Mpc) Late (2018 − 20, 65 − 115 Mpc) Design (2019, 200 Mpc) Design (2021, 130 Mpc) BNS − optimized (215 Mpc) BNS − optimized (145 Mpc) − 22 − 22 10 10 − 23 − 23 10 10 − 24 − 24 10 10 1 2 3 1 2 3 10 10 10 10 10 10 frequency (Hz) frequency (Hz) 100 Mpc = 326Mly = redshift (z) of 0.024 Aasi et al. 1304.0670
Mass ratio 4:1 2:1 1:1 ~ Average mass of the two components Image credit: Stevenson et al. 1504.07802
• Gravitational wave detectors are sensitive to sources from many directions � • Do not require “pointing” � • Makes source localization difficult � 24
GEO LIGO Virgo Hanford LIGO Livingston 25
5 × 10 − 3 0 1 2 3 4 prob. per deg 2 Singer et al. ApJ 795 (2014), 2, 105
1 . 5 × 10 − 2 0 . 0 0 . 5 1 . 0 prob. per deg 2 Singer et al. ApJ 795 (2014), 2, 105
2016 2017-8 2018 - ?? With a fourth observatory Aasi et al. 1304.0670
Aasi et al. 1304.0670 Abbott et al. CQG 27, 173001 (2010)
1.4 0.30 0.25 0.20 1.2 0.15 Χ 0.10 Χ NS � 0 0.05 m 1 � M � 1.0 0.00 � 0.05 1.5 2.0 2.5 3.0 Χ NS � 0.05 m 2 � M � 0.8 0.6 1.5 2.0 2.5 3.0 3.5 m 2 � M � Hannam, IH, et al. Astrophys.J. 766 (2013) L14
� ( m 1 × m 2 ) � 3 / 5 1.4 0.30 M = ( m 1 + m 2 ) × 0.25 ( m 1 + m 2 ) 2 0.20 1.2 0.15 Χ 0.10 Χ NS � 0 0.05 m 1 � M � 1.0 0.00 � 0.05 1.5 2.0 2.5 3.0 Χ NS � 0.05 m 2 � M � 0.8 0.6 1.5 2.0 2.5 3.0 3.5 m 2 � M � Hannam, IH, et al. Astrophys.J. 766 (2013) L14
� 3.2,3.2 � � 3.0 2.5 2.0 � 2,2 � � m 1 � M � 1:2 1.5 2.786 � 1.35,1.35 � � 1:4 � 1.0,1.0 � 1.0 � 1.741 1:10 1.219 0.5 0.871 0.0 0 2 4 6 8 10 m 2 � M � Hannam, IH, et al. Astrophys.J. 766 (2013) L14
8 Inspiral only � 7.3,7.3 � � 7 BBH region 6 Merger � � 5.7,5.7 � � ringdown m 1 � M � 5 4 3 2 2 4 6 8 10 12 14 m 2 � M � Hannam, IH, et al. Astrophys.J. 766 (2013) L14
3.5 0.90 0.85 3.0 0.80 Χ 2 0.75 2.5 0.70 0.65 m 1 � M � 2.0 0.60 0.5 1.0 1.5 2.0 2.5 1.5 � m 1 � M � 1.0 0.5 0.0 0 5 10 15 20 25 m 2 � M � Hannam, IH, et al. Astrophys.J. 766 (2013) L14
30 1 25 0.8 20 0.6 m 1 � 2 15 0.4 10 0.2 5 0 0 0 1 2 3 4 5 6 m 2 Littenberg, et al. 1503.03179
120 110 100 90 2 [ M � ] 80 m z 70 60 50 40 100 110 120 130 140 150 160 170 180 m z 1 [ M � ] Ghosh et al. arXiv: 1505.0560
Vitale et al. PRL 112, 251101 (2014)
Mandel et al. MNRAS 450, L85
Stevenson et al. 1504.07802
W. Del Pozzo, Phys. Rev. D 86, 043011 (2012)
0 . 08 TaylorT4 + all 0 . 07 (70 catalogs) δχ 3 = − 0 . 1 0 . 06 (30 catalogs) ) P (ln O modGR 0 . 05 GR 0 . 04 0 . 03 0 . 02 0 . 01 0 . 00 − 40 − 20 0 20 40 60 80 100 120 140 ln O modGR GR M. Agathos et al., Phys. Rev. D 89, 082001 (2014)
• We expect gravitational-wave astronomy to begin in the next years • Compact binary mergers are a key target for these systems • I hope to have given you a flavour of what we can learn from observing such systems
Any questions?
• Gravity is described as a warping of space and time o Caused by the mass and energy in the universe 44
Black hole space-time 45
Image: T. Carnahan (NASA GSFC) 46
47
• How would we know when there is a black hole signal in data from LIGO and Virgo? • PROBLEM: The data is contaminated by other noise sources: seismic, thermal, human …. • PROBLEM: Unless the black holes are really close, data with a signal in it will look indistinguishable from data with no signal in it. • SOLUTION: Matched-filtering 49
• Optimal if looking for a known signal buried in noise. Wainstein and Zubakov “Extraction of signals from noise”, 1962 Allen et al. Phys.Rev. D85 (2012) 122006 Babak, … ,IH, et al. Phys.Rev. D87 (2013) 024033 50
51
Time-frequency spectrograms showing power Loud simulated black hole merger A noise artifact 52
• Flag times of poor data quality • Use a variety of monitors to identify instrumental misbehaviour • Require “coincident” signal in several detectors • Make use of signal consistency tests 53
Recommend
More recommend