neutrino flavor transformation from compact object mergers
play

Neutrino flavor transformation from compact object mergers Gail - PowerPoint PPT Presentation

Neutrino flavor transformation from compact object mergers Gail McLaughlin North Carolina State University Collaborators: Jim Kneller (NC State), Alex Friedland (SLAC), Annie Malkus (University of Wisconsin), Albino Perego (Darmstadt), Rebecca


  1. Neutrino flavor transformation from compact object mergers Gail McLaughlin North Carolina State University Collaborators: Jim Kneller (NC State), Alex Friedland (SLAC), Annie Malkus (University of Wisconsin), Albino Perego (Darmstadt), Rebecca Surman (Notre Dame), Daavid V¨ an¨ a¨ anen (NC State), Yonglin Zhu (NC State)

  2. Why examine neutrino flavor transformation for mergers? • Recent hints from astronomy that a rare event may be responsible for the main r-process Frebel, Roderer . mergers? • Current and upcoming radioactive beam experiments will reduce uncertainties in nuclear masses, reactions for nucleosynthesis. • Many new merger simulations currently being performed. • Flavor transformation may affect not only nucleosynthesis but also dynamics, jet formation in mergers.

  3. Nucleosynthesis from neutron star mergers • tidal ejecta • disk/hypermassive NS outflow • collisional ejecta • outflow from viscous heating fig. from Bauswein et al 2013 fig. from Perego et al 2014

  4. Nucleosynthetic outflow influenced by neutrinos • tidal ejecta • disk/hypermassive NS outflow • collisional ejecta • outflow from viscous heating fig. from Bauswein et al ’13 fig. from Perego et al ’14

  5. The influence of neutrinos on tidal, collisional outflow Fig. from Roberts et al 2016, for more collisional/tidal ejecta with neutrinos see also Wanajo et al ’14, Sekiguichi et al ’15, ’16, Just ’15, Radice et al ’16, Lehner et al ’16

  6. The influence of neutrinos on wind outflow Malkus et al ’16 For wind neutrino influence on nucleosynthesis/ Ye see also Surman et al ’08, Wanajo et al ’12, Caballero et al ’14, Metzgeret al ’14, Perego et al ’14, Foucart et al ’15, Martin et al ’16, Wu et al ’16

  7. Neutrinos influence nucleosynthesis Neutrinos change the ratio of neutrons to protons ν e + n → p + e − ν e + p → n + e − ¯

  8. Oscillations change the neutrinos Neutrinos change the ratio of neutrons to protons ν e + n → p + e − ν e + p → n + e − ¯ Oscillations change the spectra of ν e s and ¯ ν e s ν e ↔ ν µ , ν τ ν e ↔ ¯ ¯ ν µ , ¯ ν τ Mergers have less ν µ , ν τ than ν e and ¯ ν e → oscillation reduces numbers of ν e , ¯ ν e

  9. Neutrino oscillations usually studied in free streaming limit Usually calculated in a regime with few collisions, so above trapping surfaces → free streaming approximation Interesting flavor transformation behavior stems from the potentials neutrinos experience. These potentials come from coherent forward scattering from neutrons, protons, electrons, positrons, neutrinos.

  10. Oscillations: scales Modified wave equation   νν − δm 2 νν + δm 2  V e + V a V b 4 E cos(2 θ ) 4 E sin(2 θ ) i � c d  ψ drψ ν = νν + δm 2 νν + δm 2 V b − V e + − V a 4 E sin(2 θ ) 4 E cos(2 θ ) Scales in the problem: • vacuum scale δm 2 4 E • matter scale V e ∝ G F N e ( r ) • neutrino self-interaction scale V νν ∝ G F N ν ∗ angle − G F N ¯ ν ∗ angle

  11. Oscillations: vacuum Modified wave equation   νν − δm 2 νν + δm 2  V e + V a V b 4 E cos(2 θ ) 4 E sin(2 θ ) i � c d  ψ drψ ν = νν + δm 2 νν + δm 2 V b − V e + − V a 4 E sin(2 θ ) 4 E cos(2 θ ) Scales in the problem: • vacuum scale δm 2 4 E • matter scale V e ∝ G F N e ( r ) • neutrino self-interaction scale V νν ∝ G F N ν ∗ angle − G F N ¯ ν ∗ angle δm 2 4 E >> V e , V νν → vacuum oscillations e.g. atmospheric neutrinos, most terrestrial oscillation experiments

  12. Oscillations: MSW Modified wave equation   νν − δm 2 νν + δm 2  V e + V a V b 4 E cos(2 θ ) 4 E sin(2 θ ) i � c d  ψ drψ ν = νν + δm 2 νν + δm 2 V b − V e + − V a 4 E sin(2 θ ) 4 E cos(2 θ ) Scales in the problem: • vacuum scale δm 2 4 E • matter scale V e ∝ G F N e ( r ) • neutrino self-interaction scale V νν ∝ G F N ν ∗ angle − G F N ¯ ν ∗ angle δm 2 4 E ∼ V e >> V νν → MSW oscillations e.g. sun, outer layers of supernova, outer layers of compact object merger

  13. Oscillations: nutation/bipolar Modified wave equation   νν − δm 2 νν + δm 2  V e + V a V b 4 E cos(2 θ ) 4 E sin(2 θ ) i � c d  ψ drψ ν = νν + δm 2 νν + δm 2 V b − V e + − V a 4 E sin(2 θ ) 4 E cos(2 θ ) Scales in the problem: • vacuum scale δm 2 4 E • matter scale V e ∝ G F N e ( r ) • ν self-interaction scale V νν ∝ G F N ν ∗ angle − G F N ¯ ν ∗ angle δm 2 4 E ∼ V νν → nutation/bipolar oscillations e.g. supernova (100s of km), see e.g. Balantekin, Dighe, Duan, Carlson, Fuller, Kneller, Mirrizi, Pehlivan, Raffelt, Qian, Volpe, Yoshida, Yuksel , black hole accretion disks Dasgupta et al

  14. Oscillations: matter neutrino resonance Modified wave equation   νν − δm 2 νν + δm 2  V e + V a V b 4 E cos(2 θ ) 4 E sin(2 θ ) i � c d  ψ drψ ν = νν + δm 2 νν + δm 2 V b − V e + − V a 4 E sin(2 θ ) 4 E cos(2 θ ) Scales in the problem: • vacuum scale δm 2 4 E • matter scale V e ∝ G F N e ( r ) • ν self-interaction scale V νν ∝ G F N ν ∗ angle − G F N ¯ ν ∗ angle V e ∼ V νν → MNR oscillations e.g. Mergers, black hole accretion disks, Malkus et al ’12, ’14, Duan, Frensel, Kneller, Malkus, GCM, Qian, Perego, Surman, Wu, V¨ a¨ an¨ anen, Volpe, Zhu

  15. Oscillations: nonlinear Modified wave equation   νν − δm 2 νν + δm 2  V e + V a V b 4 E cos(2 θ ) 4 E sin(2 θ ) i � c d  ψ drψ ν = νν + δm 2 νν + δm 2 V b − V e + − V a 4 E sin(2 θ ) 4 E cos(2 θ ) Whenever V νν is important, the problem is very nonlinear. V νν depends on the number density of each flavor of neutrino, which depends how the neutrinos have oscillated. multi-energy : each energy neutrino and antineutrino has its own equation, solved simultaneously with the others multi-angle : each emitted neutrino and antineutrino has its own equation, solved simultaneously with the others **This means thousands of these coupled equations.**

  16. Why are merger oscillations different than supernova? Potentials V νν and V e can have opposite sign Capture some basic behavior with a toy model: single energy gas of neutrinos and antineutrinos. More antineutrinos than neutrinos. Let density of neutrinos and antineutrinos decline. Matter stays fixed. Calculate survival probabilities: P ν e = | ψ ν e | 2 , P ¯ ν e | 2 ν e = | ψ ¯

  17. Neutrino-Matter Transition: single energy model Potentials V νν and V e can have opposite sign Survival Probability 1 P ν e, num 0.8 P ν e, num 0.6 P ν e, pred 0.4 P ν e, pred 0.2 3000 2500 V e 2 /2E)| 2000 |V νν | 1500 |V( δ m 1000 500 0 0 5 10 15 20 25 30 35 40 2 ) Distance (2E/ δ m Fig. from Malkus et al 2014

  18. Matter Neutrino Resonance Transitions What is happening? Explanations: Neutrinos stay “on resonance” Malkus et al ’14 , instantaneous mass splitting stays “small” V¨ annen et al ’16 , neutrinos are “adiabatic” Wu et al a¨ an¨ nannen et al ’16 all lead to same formula at zero order ’16, V¨ a¨ a¨ P ν e ≈ ( α 2 − 1 ) µ ν ( r ) 2 − V e ( r ) 2 − 1 / 2 4 V e ( r ) µ ν ( r ) ν e ≈ ( α 2 − 1 ) µ ν ( r ) 2 + V e ( r ) 2 P ¯ + 1 / 2 4 αV e ( r ) µ ν ( r ) α is the asymmetry between antineutrinos and neutrinos and µ ν is the scale of the neutrino self interaction potential

  19. Neutrino-Matter Transition: single energy model Compare numerics to prediction Survival Probability 1 P ν e, num 0.8 P ν e, num 0.6 P ν e, pred 0.4 P ν e, pred 0.2 3000 2500 V e 2 /2E)| 2000 |V νν | 1500 |V( δ m 1000 500 0 0 5 10 15 20 25 30 35 40 2 ) Distance (2E/ δ m Fig. from Malkus et al 2014

  20. Now switch to a disk geometry and a multi-energy calculation Neutrino disk is 45 km, neutrinos have temperature 6.4 MeV Antineutrino disk is 45 km, antineutrinos have temperature of 7.1 MeV Launch a neutrino at 45 degrees to the disk.

  21. Merger oscillations: potentials for same size ν e and ¯ ν e disks V e 10 -16 |V ν | ∆ 12 | ∆ 32 | MNR region 10 -18 Potential (erg) nutation region 10 -20 MSW region 10 -22 10 -24 10 5 10 6 10 7 10 8 10 9 10 10 Position (cm)

  22. Merger oscillations: survival probabilities for same size ν e and ¯ ν e disks multi-energy, single angle calculations 1.4 V e Survival Probability MNR nutation MSW 10 -16 1.2 |V ν | region region region 1 ∆ 12 0.8 | ∆ 32 | MNR 0.6 region 10 -18 0.4 <P> Potential (erg) < - 0.2 nutation region P> 0 10 -20 1.4 Survival Probability 1.2 MSW region 1 10 -22 0.8 0.6 0 0.4 λ ν e / λ ν e 10 -24 0.2 λ - ν e / λ - 0 0 ν e 10 5 10 6 10 7 10 8 10 9 10 10 10 5 10 6 10 7 10 8 10 9 10 10 Position (cm) Position (cm) fig. from Malkus et al 2016 fig. from Malkus et al 2016, see also Frensel et al 2016

  23. Merger oscillations: potentials for different size ν e and ¯ ν e disks V e 10 -16 |V ν | symmetric MNR region ∆ 12 | ∆ 32 | MNR region 10 -18 Potential (erg) nutation region 10 -20 MSW region 10 -22 10 -24 10 5 10 6 10 7 10 8 10 9 10 10 Position (cm)

Recommend


More recommend