flavor without symmetries
play

Flavor without symmetries Alex Pomarol, UAB (Barcelona) Flavor - PowerPoint PPT Presentation

Flavor without symmetries Alex Pomarol, UAB (Barcelona) Flavor without symmetries Alex Pomarol, UAB (Barcelona) Apologizes: I am not going to talk on glances at the energy frontier Flavor without symmetries Alex Pomarol, UAB (Barcelona)


  1. Flavor without symmetries Alex Pomarol, UAB (Barcelona)

  2. Flavor without symmetries Alex Pomarol, UAB (Barcelona) Apologizes: I am not going to talk on glances at the energy frontier

  3. Flavor without symmetries Alex Pomarol, UAB (Barcelona) Apologizes: I am not going to talk on glances at the energy frontier Interpreting other “null results”: the absence of new flavor sources beyond the SM

  4. After many years, no clear progress on the origin of flavor in the SM: Many ideas, but without sharp predictions s n o M i s n e m i a d a r s t x e n s i n e o i t a z s i l a gauge flavor symmetries c o L f r o m Froggatt-Nielsen l o o p s … contrary to gauge couplings → predictions from GUTs Higgs quartic → predictions from SUSY or Composite Higgs

  5. After many years, no clear progress on the origin of flavor in the SM: Many ideas, but without sharp predictions s n o M i s n e m i a d a r s t x e n s i n e o i t a z s i l a gauge flavor symmetries c o L f r o m Froggatt-Nielsen l o o p s … contrary to gauge couplings → predictions from GUTs Higgs quartic → predictions from SUSY or Composite Higgs In BSMs for the hierarchy problem things are even worse (or more interesting) , as generically predict new sources of flavor… ( ¯ f i γ µ f j )( ¯ ϵ K , ϵ ’/ ϵ , Δ M B , B → Xll, … f l γ µ f k ) not serious deviation seen!

  6. “Cheap” way to avoid them: ☛ Demand similar BSM flavor-structure as in the SM: Minimal Flavor Violation (MFV) Flavor under control for new physics scale at ~TeV but global symmetries are accidental So, why/how they arise?

  7. Symmetries from dynamics!

  8. Symmetries from dynamics! But only few examples known: SUSY: Gauge Mediated Susy Breaking (GMSB) soft-masses through gauge interactions (flavor blind) x ~ ~ Q Q but today minimal GMSB highly tuned to reproduce m h ~125 GeV Beyond minimal models… EDMs are sizable! ◆ 2 ✓ M S d e ∼ 10 − 28 cm e tan β 10 TeV

  9. Symmetries from dynamics! But only few examples known: Composite Higgs: More difficult, as we must address the origin of Yukawas: Higgs associated to a composite operator: O H ∼ ¯ ψψ As dimension of O H is larger than 1 ( d H >1 ) Yukawas, ff O H , are irrelevant couplings! We cannot push their origin to Planck-physics!

  10. Symmetries from dynamics! But only few examples known: Composite Higgs: Most interesting possibility: Yukawas from linear mixing to operators of the strong sector: L lin = ✏ f i ¯ f i O f i (portal of f i to the strong sector) ⤷ depending on the dimension of O f , we can have relevant or irrelevant couplings ☛ large or small mixings ϵ f

  11. O(1) numbers (anomalous dimensions γ i of O f i ) can lead to large hierarchies: From the RGE: ◆ γ i ✓ Λ IR ✏ f i ( Λ IR ) ∼ γ i = Dim[ O f i ] − 5 / 2 > 1 M P ☛ small mixings at Λ IR The smaller mixing, the smaller the mass: ☛ Y f ⇠ g ∗ ✏ f i ✏ f j , f j f i ⤷ coupling of the strong sector

  12. Explicit example (for the top): arXiv:1502.00390 SU(4) strong sector a) three ∈ 4 (fundamental) Ψ L,R } Fermions: ΨΥΨ = O top n Υ b) five ∈ 6 (antisym. matrix) Operator that can be coupled to the top Global sym. G = SU (5) × SU (3) × SU (3) ′ × U (1) X × U (1) ′ H = SO (5) × SU (3) color × U (1) X dimension at weak coupling: 9/2 dimension needed at strong coupling: 5/2 ( γ = 2) Possible? lattice could tell us!

  13. AdS/CFT perspective x b L , b R s L , s R x d L , d R x x Higgs Λ IR ☛ easier from string theory?

  14. Flavor & CP-violation constraints g 2 ✏ f i ✏ f j ✏ f k ✏ f l ¯ f i � µ f j ¯ ∗ f k � µ f l , Λ 2 IR ⤷ scale of the strong sector: expected ~TeV ϵ K bound: Λ IR > 10 TeV g 2 g ∗ v ✏ f i ✏ f j ¯ f i � µ ν f j gF µ ν ∗ Λ 2 16 ⇡ 2 IR ⇣ g ∗ ⌘ EDM bound: Λ IR > 100 TeV 3 ⇣ g ∗ ⌘ μ→ e γ bound: Λ IR > 60 TeV 3

  15. arXiv:1106.6357 Other alternatives: arXiv:1203.4220 Consider some SM fermion fully composite: For example: Q R u R , d R If arise from a strong sector with elementary fermions, it is not unconceivable to be flavor symmetric All flavor mixings from left-handed: ☛ MFV Q R u R ∝ Y u g 2 But also generated: u R � µ u R ) 2 ⇤ (¯ Λ 2 IR ⇣ g ∗ ⌘ give deviation in dijets distributions, pp → jj : Λ IR & 20 TeV 3

  16. Towards suppressing EDMs: Avoid linear mixing of light fermions to BSM: L lin = ✏ f i ¯ f i O f i BSM BSM L bil ⇠ ¯ Bilinear mixing: f i O H f j EDM at most at Not possible in the MSSM, two-loop! but possible in composite Higgs models

  17. Possibility considered here: G.Panico, AP 1603.06609 (also related work by Matsedonskyi 15, Cacciapaglia etal 15) L lin = ✏ f i ¯ f i O f i ⤷ portal decouples at higher energies: E.g. if a constituent get a mass ~ Λ f L bil ⇠ ¯ f i O H f j bilinear mixing generated at Λ f ⤷ Operator of the strong sector that at Λ IR projects into the Higgs: O H h 0 |O H | H i 6 = 0, e.g. O H ∼ ¯ ψψ The larger the scale of decoupling, the smaller the fermion mass!

  18. Down-quark sector Decoupling Operator energy scale Λ d O d R , O Q L 1 Λ s O s R R , O Q L 2 Λ b O b R R , O Q L 3 Λ IR

  19. Envisaging from explicit examples: SU(4) strong sector a) three ∈ 4 (fundamental) Ψ L,R } Fermions: ΨΥΨ = O top n Υ b) five ∈ 6 (antisym. matrix) add more elementary fermions Ψ with explicit masses M Ψ d ΨΥΨ d d ΨΥΨ M Ψ s s s ΨΥΨ M Ψ b b b

  20. AdS/CFT perspective x b L , b R s L , s R x d L , d R x x Higgs Λ IR x I b L , b R I s L , s R x I I x d L , d R x I I Higgs Λ d Λ s Λ b Λ IR

  21. AdS/CFT perspective x b L , b R s L , s R x d L , d R x x Higgs Λ IR x I b L , b R I s L , s R x I I x d L , d R x I I Higgs Λ d Λ s Λ b Λ IR CFT 3 → CFT 2 → CFT 1 → CFT 0

  22. Arising flavor structure Down-quark sector Decoupling Operator energy scale Λ d O d R , O Q L 1 Λ s O s R R , O Q L 2 Λ b O b R R , O Q L 3 Λ IR

  23. Arising flavor structure Down-quark sector d bottom, b R : Decoupling L (3) lin = ✏ (3) Q L 3 O Q L 3 + ✏ (3) b L ¯ b R ¯ Operator b R O b R . energy scale below Λ b : O Λ d O d R , O Q L 1 1 L (3) ( ✏ (3) Q L 3 ) O H ( ✏ (3) b L ¯ bil = b R b R ) Λ d H − 1 b Λ s O s R R , O Q L 2 C below Λ IR : A 0 0 0 0 1 ◆ d H − 1 ✓ Λ IR 0 0 0 + g ∗ Y down = B C Λ b @ A Λ b 0 0 ✏ (3) b L ✏ (3) O b R R , O Q L 3 b R Λ IR

  24. Arising flavor structure Down-quark sector L (2) lin = ( ✏ (2) b L ¯ s L ¯ Q L 3 + ✏ (2) Q L 2 ) O Q L 2 Decoupling Operator energy scale 2 + ( ✏ (2) b R b R + ✏ (2) s R s R ) O s R Λ d O d R , O Q L 1 below Λ s : O O 1 L (1) ( ✏ (1) Q L 2 + ✏ (1) Q L 1 ) O H ( ✏ (1) s R s R + ✏ (1) b L ¯ s L ¯ d L ¯ Q L 3 + ✏ (1) b R b R + ✏ (1) bil = d R d R ) Λ d H − 1 Λ s d O s R R , O Q L 2 below Λ IR : 0 0 0 0 1 Λ b ◆ d H − 1 O b R R , O Q L 3 ✓ Λ IR 0 ✏ (2) s L ✏ (2) ✏ (2) s L ✏ (2) + g ∗ Y down = B C s R b R Λ s @ A 0 ✏ (2) b L ✏ (2) s R Λ IR

  25. Arising flavor structure Down-quark sector Decoupling Operator energy scale Λ d O d R , O Q L 1 Λ s O s R R , O Q L 2 below Λ IR : ✏ (1) d L ✏ (1) ✏ (1) d L ✏ (1) ✏ (1) d L ✏ (1) 0 1 s R d R b R ◆ d H − 1 ✓ Λ IR ✏ (1) s L ✏ (1) B C = g ∗ Y down = B C d R Λ d @ A Λ b ✏ (1) b L ✏ (1) O b R R , O Q L 3 d R 0 1 Λ IR

  26. Arising flavor structure “onion” structure: ↵ ds R Y d ↵ db 0 Y d R Y d 1 ↵ ds ↵ sb L Y d Y s R Y s Y down ' B C @ A ↵ db ↵ sb L Y d L Y s Y b @ ◆ d H − 1 ✓ Λ IR Y f ⌘ g ∗ ✏ ( i ) f Li ✏ ( i ) f ' m f /v . T f Ri Λ f ● S maller Yukawas for large decoupling scale! ● M ixing angles suppressed by Yukawas: 𝛊 ij ~ Y i / Y j CKM mostly the rotation in the down-quark sector!

  27. Similarly for the up-quark sector (and lepton sector) Operator Decoupling scale O u R Λ u Λ d O d R , O Q L 1 Λ s O s R Λ c O c R , O Q L 2 Λ b O b R O t R , O Q L 3 Λ t ∼ Λ IR

  28. Scales of decoupling: �� � �� - ���� ���� - ���� ������� �� � [ ��� ] � �� ���� �� � � �� ���� Λ � ��� � �� ���� ��� ��� ��� ��� ��� ��� � � dimension of the Higgs operator ( ) O H ∼ ¯ ΥΥ

  29. Scales of decoupling: �� � �� - ���� ���� - ���� ������� �� � [ ��� ] � �� ���� �� � � �� ���� Λ � ��� � �� ���� ��� ��� ��� ��� ��� ��� � � dimension of the Higgs operator ( ) d H ~2 needed to pass FCNC O H ∼ ¯ ΥΥ (“walking TC”: d H ~2 instead of ~3)

  30. Flavor and CP-violating effects

  31. Different effects at different scales: Effects from the top Λ u ∆ F = 2 transitions Λ d ∼ Y 2 2 t ( Q L 3 � µ Q L 3 ) 2 t Λ s Λ 2 IR physical basis Λ c rotation ~ V CKM Λ b ϵ K , Δ M B d , Δ M Bs correlated and all close Λ t ∼ Λ IR to the experimental value for Λ IR ~2-3 TeV

Recommend


More recommend