Flavor and Scalar Signals of an Extended Color Sector R. Sekhar Chivukula Michigan State University - Extended Color Dynamics - A Top-Coloron Model - Flavor Symmetries and Constraints - Scalars: Same Sign Top Signature - Flavor Independent Constraints - Conclusions KMI, Nagoya University March 5-7, 2014
Extended Color Dynamics New colored gauge bosons Classic Axigluon : P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987). Topgluon: C.T. Hill, Phys. Lett. B 266, 419 (1991). Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996). Chiral Color with g L ≠ g R : M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009). New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010). Other color-octet states: (cf. “partial compositeness”) KK gluon : H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001) B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007). Techni-rho : E. Farhi and L. Susskind, Physics Reports 74, 277 (1981). Recent catalog of colored states: Color sextets, colored scalars, low-scale scale string resonances... T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).
Gauge Sector
Coloron Models: Gauge Sector u SU(3)1 SU(3)2 h1 h2 M 2 = u 2 ✓ h 2 ◆ − h 1 h 2 SU(3) 1 x SU(3) 2 color sector with 1 h 2 − h 1 h 2 4 2 unbroken subgroup: SU(3) 1+2 = SU(3) QCD g s g s h 2 = h 1 = cos θ sin θ G A µ = cos θ A A 1 µ + sin θ A A gluon state: 2 µ g S J µ G ≡ g S ( J µ 1 + J µ 2 ) couples to: u q C A µ = − sin θ A A 1 µ + cos θ A A h 2 1 + h 2 coloron state: M C = 2 2 µ √ 2 g S J µ C ≡ g S ( − J µ 1 tan θ + J µ couples to: 2 cot θ ) F F = − g 2 J µ S L 2 low-energy current-current interaction: C J C µ 2 M 2 C
Fermions
Coloron Models: Quark Charges g S J µ G ≡ g S ( J µ 1 + J µ u 2 ) SU(3)1 SU(3)2 g S J µ C ≡ g S ( − J µ 1 tan θ + J µ 2 cot θ ) h1 h2 F F = − g 2 low-energy current-current interaction: J µ S L 2 C J C µ 2 M 2 C Depending on how quarks transform under SU(3) 1 x SU(3) 2 the presence of colorons may impact • LHC dijet mass distribution (or angular distribution) • kinematic distributions of tt or bb final states • asymmetry in top-quark production: A tFB • FCNC processes: mixing, K ¯ K, D ¯ D, B ¯ B b → s γ • precision EW observables: delta-rho, R b
Patterns of Quark Charges SU(3) 1 SU(3) 2 model pheno. (t,b) L q L t R ,b R q R coloron dijet q R (t,b) L q L t R ,b R t R ,b R (t,b) L q L q R q L (t,b) L t R ,b R q R q L t R ,b R (t,b) L q R new axigluon dijet, A tFB, FCNC dijet, tt, bb, q L q R (t,b) L t R ,b R topgluon FCNC, R b... t R ,b R q R (t,b) L q L classic axigluon dijet, A tFB q L t R ,b R q R (t,b) L (No spectators required) q = u,d,c,s
A Flavorful Top-Coloron Model R.S.C., Elizabeth Simmons, N. Vignaroli PRD 87 (2013) 075002
Flavorful Top-Coloron Model particle rticles SU(3) 1 SU(3) 2 SU(2) W (t,b) L 3 1 2 3rd generation 3rd generation quarks quarks t R ,b R 3 1 1 (u,d) L (c,s) L 1 3 2 light quarks light quarks u R ,d R c R ,s R 1 3 1 vector quarks Q L ,Q R 3 1 2 𝟀 light scalar 1 1 2 Φ heavy scalar 3 3* 1 Next to minimal flavor symmetry:
Generational Mixing SU(3) 1 x SU(3) 2 x SU(2) W (1,1,2) (3, 3 * ,1) < Φ > < 𝟀 > X t R , b R Q L Q R (u,d) L (c,s) L (3,1,1) (3,1,2) (3,1,2) (1,3,2) Mixing to third generation occurs indirectly, through mixing with vector quarks. 1,2)
Generational Mixing Light Generations { { { { { { Third Generation Vector Quarks Weak Mixing ⇒ Cabbibo Matrix, , and C d = O (1) α 1 = O ( λ 3 ) α 2 = O ( λ 2 ) 1,2)
Constraints from Flavor Physics R.S.C., Elizabeth Simmons, N. Vignaroli PRD 87 (2013) 075002
FCNC in Top-Coloron Model • Mixing among ordinary and heavy vector quarks also leads to flavor-changing b-quark decays: b → s γ • Coloron exchange yields KK, DD, and BB mixing ‣ quark charges under strong gauge groups are non-universal ‣ the top and bottom mass eigenstate quarks are admixtures of ordinary and heavy vector gauge eigenstate quarks
Constraints: b → s Υ 0.004 0.002 ' D Re @ Λ b 0.000 Mixing with right- handed electroweak doublets - 0.002 enhances contributions to b → s γ - 0.004 - 0.4 - 0.2 0.0 0.2 0.4 ' D Re @ Λ t
Constraints: B-Bbar Mixing b L b L s L s L b L s L C C C b L b L s L s L b L s L s L s L b L b L s L b L ( a ) ( b ) ( c ) Flavor-changing Effects from Coloron Exchange: interplay between mixing and coupling strengths
Flavor Limits on Top-Coloron Model M C H TeV L Allowed...depends on α 2 5 Λ 2 4 KK mixing Λ 2 ë 2 may exclude 3 KK mixing Λ 2 ë 3 LHC dijets 2 may exclude exclude KK mixing certainly BB mixing and 1 excludes b → s γ exclude Θ 0 5 Cot Ω 1 2 3 4 R.S. Chivukula, EHS, N. Vignaroli (2013)
Scalar Bosons R.S.C., Elizabeth Simmons, N. Vignaroli PRD 88 (2013) 034006 Bogdan Dobrescu and Yang Bai JHEP 1107 (2011) 100
Colored Scalars and Their Potential _ Most general renormalizable (3,3) potential: For an appropriate range of parameters: vev singlet fields eaten by colorons { Color Octet Scalars Quark couplings fixed from above!
Octet Scalar Production G H Double Production s @ fb D LHC - 14 LHC - 8 10 5 LHC - 7 Tevatron 10 4 1000 100 M GH H GeV L 10 200 400 600 800 1000
Octet Scalar Decay Dijets: G H g g G H G H G H µ G H µ G H g g G H μ related to singlet pseudoscalar mass c L t R + ¯ t R c L : ¯
Top + Charm Often Very Large! 4000 0.2 0.4 0.1 0.5 0.6 0.7 3500 0.3 0.8 3000 0.9 2500 M ∆ I H GeV L 2000 _ _ BR to t+c or c+t 1500 1000 pseudo-scalar 500 mass 200 400 600 800 1000 octet mass M GH H GeV L Octet pair production can lead to same-sign tops (dileptons)!
Experimental Constraints 5000 H G H Æ gg L CMS di - jets 4000 ATLAS 3000 M ∆ I H GeV L 2000 H G H Æ tc L SSD + jets 1000 CMS 200 250 300 350 400 450 M GH H GeV L Singlet mass dependence from References: CMS PAS SUS-12-029 ATLAS arXiv:1210.4826 behavior of BRs CMS arXiv:1302.0531
Flavor- Universal Constraints On Scalars R.S.C., Arsham Farzinnia, Jing Ren, and Elizabeth Simmons PRD 88 (2013) 075020 and in press
Scalar Potential: Higgs and Mixing Scalar potential includes Higgs boson as well: ◆ 2 φ † φ − v 2 φ † φ − v 2 − v 2 ✓ ✓ ◆ ✓ ◆ V ( φ , Φ ) ⊂ λ h Φ † Φ s h h ⇥ ⇤ + λ m Tr 6 2 2 2 “Higgs portal” coupling: mixing between electroweak and color sectors h = cos χ h 0 − sin χ φ 0 R
Precision Electroweak Constraints 0.00 S - T contour 3000 150 GeV at 95% C.L. sin c = 0.5 - 0.01 900 GeV sin c = 0.2 Excluded by S - T 2500 230 GeV at 95% C.L. 3000 GeV - 0.02 Excluded 2000 T region m s H GeV L - 0.03 450 GeV 1500 - 0.04 1000 - 0.05 0.00 0.01 0.02 0.03 0.04 0.05 S 500 h, φ R 0.0 0.2 0.4 0.6 0.8 1.0 sin Χ W ± , Z S-T contours from Gfitter, arXiv:1209.2716
New States Contribute to Higgs Production! Spectator Colorons Scalars Fermions
ATLAS Higgs Observation Moriond EW 2013, LP2013 ATLAS-CONF-2013-034,012,013
CMS Higgs Observation Moriond EW 2013, LP2013 CMS-PAS-HIG-13-001,2 CMS-PAS-HIG-12-045
Constraints from Higgs Observation Coloron and colored scalar contributions to production... h → φ I φ I allowed CMS-PAS-HIG-13-005 Note scale for v s ! ATLAS-CONF-2013-034 Yao, Moriond EW 2013
Illustration of Combined Results u=1000 GeV u=5000 GeV m GH = 500 GeV m GH = 2000 GeV Unitarity Unitarity allowed Higgs Higgs S-T production production S-T allowed Illustrates interplay of different constraints ... and of direct and indirect bounds
Heavy Singlet Boson LHC Reach in σ *BR/( σ *BR) SM Higgs 7+8 TeV 1 m H gg Æ s Æ VV L current 14 TeV, 300 fb - 1 0.1 projected 14 TeV, 3000 fb - 1 0.01 200 400 600 800 1000 m s H GeV L CMS-PAS-HIG-13-002/3 ATLAS-CONF-2013-013/030
LHC Singlet Boson Reach Projection with 300 fb -1 @ 14 TeV Discovery Region Excluded by current heavy Higgs search (one spectator fermion) 125 GeV Higgs production exclusion Illustrates that direct limits/searches will dominate!
Conclusions
Conclusions Many models predict extended strong interactions Is this extended dynamics flavor-universal or not? • Introduced a flavorful top-coloron model • Constraints from FCNCs favor NMFV. • Same-sign tops, and therefore dileptons, an interesting signature for new colored scalars. Additional effects of extended strong interactions? • Color symmetry breaking sector can mix with EWSB • Constraints on Higgs mixing and from observed properties of Higgs boson • Discovery potential for heavy states at 14 TeV
Recommend
More recommend