intro to zoom lecture
play

Intro to Zoom Lecture Math 482, Lecture 20.5 Misha Lavrov March - PowerPoint PPT Presentation

Intro to Zoom Lecture Math 482, Lecture 20.5 Misha Lavrov March 23, 2020 Plans for the online future Homework due Friday to: uiuc.math482@gmail.com Plans for the online future Homework due Friday to: uiuc.math482@gmail.com Lectures on Zoom


  1. Intro to Zoom Lecture Math 482, Lecture 20.5 Misha Lavrov March 23, 2020

  2. Plans for the online future Homework due Friday to: uiuc.math482@gmail.com

  3. Plans for the online future Homework due Friday to: uiuc.math482@gmail.com Lectures on Zoom via the same link: https://illinois.zoom.us/j/499672332

  4. Plans for the online future Homework due Friday to: uiuc.math482@gmail.com Lectures on Zoom via the same link: https://illinois.zoom.us/j/499672332 Exams online, somehow.

  5. Plans for the online future Homework due Friday to: uiuc.math482@gmail.com Lectures on Zoom via the same link: https://illinois.zoom.us/j/499672332 Exams online, somehow. Today: a bit of review of Fourier–Motzkin elimination, to get you acquainted with the online setting.

  6. Plans for the online future Homework due Friday to: uiuc.math482@gmail.com Lectures on Zoom via the same link: https://illinois.zoom.us/j/499672332 Exams online, somehow. Today: a bit of review of Fourier–Motzkin elimination, to get you acquainted with the online setting. (Questions?)

  7. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( b ) − x − 2 y ≤ − 4 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  8. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( a ) − x + y ≤ 3 ( b ) − x − 2 y ≤ − 4 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  9. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( a ) − x + y ≤ 3 1 − 1 ( b ) − x − 2 y ≤ − 4 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  10. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( a ) − x + y ≤ 3 1 − 1 ( b ) − x − 2 y ≤ − 4 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  11. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( a ) − x + y ≤ 3 1 − 1 ( b ) − x − 2 y ≤ − 4 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( d ) − x ≤ 0 ( e ) − y ≤ 0

  12. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( a ) − x + y ≤ 3 1 − 1 ( b ) − x − 2 y ≤ − 4 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( d ) − x ≤ 0 ( e ) − y ≤ 0 ( e ) − y ≤ 0

  13. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 1: Scale all inequalities so that the coefficient of y is − 1, 0, or 1 in each. ( a ) − x + y ≤ 3 ( a ) − x + y ≤ 3 1 − 1 ( b ) − x − 2 y ≤ − 4 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( d ) − x ≤ 0 ( e ) − y ≤ 0 ( e ) − y ≤ 0 (Questions?)

  14. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) − x + y ≤ 3 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  15. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) + 1 − 3 ( a ) − x + y ≤ 3 2 ( b ) 2 x ≤ 1 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  16. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) + 1 − 3 ( a ) − x + y ≤ 3 2 ( b ) 2 x ≤ 1 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( a ) + ( e ) − x ≤ 3 ( c ) x + y ≤ 7 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  17. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) + 1 − 3 ( a ) − x + y ≤ 3 2 ( b ) 2 x ≤ 1 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( a ) + ( e ) − x ≤ 3 ( c ) + 1 1 ( c ) x + y ≤ 7 2 ( b ) 2 x ≤ 5 � ( d ) − x ≤ 0 ( e ) − y ≤ 0

  18. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) + 1 − 3 ( a ) − x + y ≤ 3 2 ( b ) 2 x ≤ 1 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( a ) + ( e ) − x ≤ 3 ( c ) + 1 1 ( c ) x + y ≤ 7 2 ( b ) 2 x ≤ 5 � ( d ) − x ≤ 0 ( c ) + ( e ) x ≤ 7 ( e ) − y ≤ 0

  19. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) + 1 − 3 ( a ) − x + y ≤ 3 2 ( b ) 2 x ≤ 1 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( a ) + ( e ) − x ≤ 3 ( c ) + 1 1 ( c ) x + y ≤ 7 2 ( b ) 2 x ≤ 5 � ( d ) − x ≤ 0 ( c ) + ( e ) x ≤ 7 ( e ) − y ≤ 0 ( d ) − x ≤ 0

  20. Fourier–Motzkin elimination Goal: We want to eliminate y from inequalities ( a )–( e ). Step 2: Combine all + y inequalities with all − y inequalities. ( a ) + 1 − 3 ( a ) − x + y ≤ 3 2 ( b ) 2 x ≤ 1 1 − 1 2 ( b ) 2 x − y ≤ − 2 ( a ) + ( e ) − x ≤ 3 ( c ) + 1 1 ( c ) x + y ≤ 7 2 ( b ) 2 x ≤ 5 � ( d ) − x ≤ 0 ( c ) + ( e ) x ≤ 7 ( e ) − y ≤ 0 ( d ) − x ≤ 0 (Questions?)

Recommend


More recommend