indefinite linear matrix pencils and the multi eigenvalue
play

Indefinite linear matrix pencils and the multi-eigenvalue problem - PowerPoint PPT Presentation

Indefinite linear matrix pencils and the multi-eigenvalue problem Hasen Mekki ZTRK University of Reading Based on joint work with Michael Levitin August, 2017 IWOTA 1 / 37 Outline Pencils 1 A matrix pencil example 2


  1. Indefinite linear matrix pencils and the multi-eigenvalue problem Hasen Mekki ÖZTÜRK University of Reading Based on joint work with Michael Levitin August, 2017 IWOTA 1 / 37

  2. Outline Pencils 1 A matrix pencil example 2 Multi-Parametric Eigenvalue Problem 3 2 / 37

  3. Pencils Pencils 3 / 37

  4. Pencils Self-adjoint pencils Let P = P ( λ ) := T 0 + λ T 1 + λ 2 T 2 + . . . + λ m T m , be a family of (bounded) operators in a Hilbert space H , which depends on a spectral parameter λ ∈ C , with self-adjoint operator coefficients T j = ( T j ) ∗ , j = 1 , . . . , n . Such a family is called a self-adjoint (polynomial) operator pencil. I shall only deal with a linear self-adjoint operator pencil written as P ( λ ) = T − λ S . 4 / 37

  5. Pencils Spectrum of a linear pencil λ 0 is an eigenvalue of P if there exists x ∈ H � { 0 } such that P ( λ 0 ) x = 0 , i.e., if 0 is an eigenvalue of P ( λ 0 ) . The spectrum is the set of values λ 0 for which there is no bounded inverse P ( λ 0 ) − 1 , i.e. if 0 ∈ Spec P ( λ 0 ) . For a linear pencil, the eigenvalue problem becomes ( T − λ S ) x = 0 , and if S is invertible, then it reduces to the eigenvalue problem for a (non-self-adjoint) operator S − 1 T ; S − 1 Tx = λ x . 5 / 37

  6. Pencils If either T or S is sign-definite, then the problem may be reduced to the one for a self-adjoint operator S − 1 / 2 TS − 1 / 2 , and the spectrum is real. If, however, both T , S are sign-indefinite, then the spectrum may be non-real. 6 / 37

  7. A matrix pencil example A matrix pencil example 7 / 37

  8. A matrix pencil example Example - A matrix pencil [DaLe] Fix an integer n ∈ N , N = 2 n , and define the N × N classes of matrices H ( N ) and S , where c   1 c   ... � I n �   1 c H ( N )   := , S := c  ... ...  − I n  1  1 c where c ∈ R is a parameter and I n is the identity matrix. The behavior of eigenvalues of the linear operator pencil P := P ( λ ) = H ( N ) − λ S c as N → ∞ was studied by Davies & Levitin(2014). 8 / 37

  9. A matrix pencil example Example - A matrix pencil [DaLe] If | c | ≥ 2, then Spec ( P ) ⊂ R . Spec ( P ) is invariant under the symmetry c → − c . Spec ( P ) is symmetric with respect to Re λ = 0 and Im λ = 0. Davies & Levitin studied the asymptotic behaviour of eigenvalues of P for large n ; For c = 0, | Im λ | ∼ 1 nY 0 ( | Re λ | ) . For 0 < c < 2, | Im λ | � 1 nY c ( | Re λ | ) . Functions Y 0 and Y c are explicit (though rather complicated), and have logarithmic singularities at Re λ = 0. 9 / 37

  10. A matrix pencil example Example - A matrix pencil [DaLe] Video time! 10 / 37

  11. A matrix pencil example √ Spec ( P ) for c = 5 / 2 and n = 500 , 250 , 99 . 11 / 37

  12. A matrix pencil example √ ∪ 250 m = 100 Spec ( P ) for c = 5 / 2 12 / 37

  13. A matrix pencil example Conjecture Asymptotic and numerical evidence suggest the following: Let c > 0. If λ ∈ Spec ( P ( λ )) � R , then c < 2 and | λ ± c | < 2 . This can also be translated in terms of Chebyshev polynomials via explicit � � H ( N ) expression for det : − λ S c Let σ, τ ∈ C , Im ( σ ) = Im ( τ ) > 0. If, for some n ∈ N , U n + 1 ( σ ) U n + 1 ( τ ) + U n ( σ ) U n ( τ ) = 0 , then | σ | < 1 and | τ | < 1. 13 / 37

  14. Multi-Parametric Eigenvalue Problem Multi-Parametric Eigenvalue Problem 14 / 37

  15. Multi-Parametric Eigenvalue Problem Pencil to Parametric problem Recall the pencil P ;   c − λ 1 ... ...   1     ...   1 c − λ   H ( N ) − λ S = .   ... c   1 c + λ     ... ...   1 1 c + λ Denote α = λ − c , β = − λ − c . 15 / 37

  16. Multi-Parametric Eigenvalue Problem Pencil to Parametric problem We will act by P on vectors which we will write as ( u 1 , . . . , u n , v n , . . . , v 1 ) T . Then � � � − � → H ( n ) = − → − α I n B u 0 0 , − → H ( n ) v − β I n B 0 where B = B ∗ with B nn = 1 and all other entries of B are zeros. 16 / 37

  17. Multi-Parametric Eigenvalue Problem Pencil to Parametric problem We first generalize to the following: for any κ > 0, let B = κ P , P = P ∗ , � P � = 1, � � � − � → H ( n ) − α I n κ P = − → u 0 0 . (1) → − H ( n ) v κ P − β I n 0 which is a special case of � A − α I 1 � � − � → = − → C u 0 , (2) − → C ∗ D − β I 2 v where, in general, − → u ∈ H 1 and − → v ∈ H 2 , A , D are self-adjoint operators in H 1 , H 2 , respectively, C is a linear operator from H 2 to H 1 , α, β ∈ C are spectral parameters. 17 / 37

  18. Multi-Parametric Eigenvalue Problem Two-parameter Matrix Eigenvalue problem Denote � A � C M = , C ∗ D so that the problem �� � − � � α I 1 � → = − → u 0 , (3) M − − → β I 2 v where − → u ∈ H 1 and − → v ∈ H 2 . ( α, β ) ∈ C 2 a multi-eigenvalue (or a pair-eigenvalue ) of M if there � − � → u exists a non-trivial solution ∈ H of (3). − → v We denote by Spec p ( M ) the spectrum of pair-eigenvalues of M . If α , β ∈ R , then ( α, β ) is called as a real pair-eigenvalue, and otherwise it is a non-real pair-eigenvalue of (3). 18 / 37

  19. Multi-Parametric Eigenvalue Problem β ( α ) problem The equation (3) can be re-written as � ( A − α I 1 ) − → = − C − → v , u ( D − β I 2 ) − → = − C ∗ − → v u . � � D − C ∗ ( A − α I 1 ) − 1 C If α / ∈ Spec ( A ) and β is an eigenvalue of , then ( α, β ) ∈ Spec p ( M ) . Note: α and β are interchangeable. 19 / 37

  20. Multi-Parametric Eigenvalue Problem Restrictions Now, suppose that H 1 , H 2 are finite dimensional, and therefore we are dealing with matrices. Additionally dim H 1 = dim H 2 . C has rank 1, or C = κ P , where κ > 0 and P is a projection on a one-dimensional subspace span {− → ϕ } of H , 20 / 37

  21. Multi-Parametric Eigenvalue Problem Notations The restriction of X on the space of vectors orthogonal to − → ϕ will be denoted by X ⊥ , ⊥ . Eigenvalues of A and D will be denoted by � α 1 ≥ � α 2 ≥ . . . ≥ � α n , � β 2 ≥ . . . ≥ � � β 1 ≥ β n , respectively. Eigenvalues of A ⊥ , ⊥ and D ⊥ , ⊥ will be denoted by α 1 ≥ α 2 ≥ . . . ≥ � α n − 1 , � � � β 2 ≥ . . . ≥ � � β 1 ≥ β n − 1 , respectively. 21 / 37

  22. Multi-Parametric Eigenvalue Problem Remark All numerical examples will be related to � � � − � → H ( n ) = − → − α I κ P u 0 0 . − → H ( n ) v − β I κ P 0 All theoretical results will be related to � � − � A − α I � → κ P = − → u 0 . − → κ P D − β I v 22 / 37

  23. Multi-Parametric Eigenvalue Problem Spectral picture for n = 7 23 / 37

  24. Multi-Parametric Eigenvalue Problem Spectral picture for n = 7 Blue curves are all real eigencurves β ( α ) , α ∈ R . Red curves are graphs of Re β ( Re α ) for eigenpairs such that Im ( α + β ) = 0 , which keeps all ( α, β ) ∈ R 2 in the picture and some complex pair-eigenvalues. Lemma Blue and red lines intersect iff d d αβ ( α ) = − 1 . 24 / 37

  25. Multi-Parametric Eigenvalue Problem Characteristic equation Theorem If α / ∈ Spec ( A ) and β / ∈ Spec ( D ) , then the characteristic equation for ( α, β ) ∈ Spec p ( M ) is κ 2 � � � � ( A − α I n ) − 1 − → ϕ , − → ( D − β I n ) − 1 − → ϕ , − → = 1 , (4) ϕ ϕ which implies � � �� �� 2 ( A − α I n ) − 2 − → ϕ , − → ( D − β I n ) − 1 − → ϕ , − → ϕ ϕ ′ = − κ 2 β � � , ( D − β I n ) − 2 − → ϕ , − → ϕ and therefore d β d α < 0 on each real branch of β ( α ) , α ∈ R . 25 / 37

  26. Multi-Parametric Eigenvalue Problem Mesh � � � � Α Α Α Α 1 2 2 1 R 4,1 R 3,1 R 2,1 R 1,1 � Β 1 R 1,2 R 3,2 R 2,2 � Β 1 R 1,3 R 2,3 � Β 2 R 1,4 � Β 2 26 / 37

  27. Multi-Parametric Eigenvalue Problem Spectral picture for n = 7 27 / 37

  28. Multi-Parametric Eigenvalue Problem n = 4 and particular values of κ 28 / 37

  29. Multi-Parametric Eigenvalue Problem Chess Board Structure for n = 6 Figure : Superimposing the values of κ from 0 . 001 to 10 with the step-size of 0 . 1. 29 / 37

  30. Multi-Parametric Eigenvalue Problem Chess Board Structure Chess Board Theorem: Suppose that Spec ( A ) � Spec ( A ⊥ , ⊥ ) = ∅ and Spec ( D ) � Spec ( D ⊥ , ⊥ ) = ∅ . Then all real pair-eigenvalues ( α, β ) of M lies in the region R p , q where p + q is even, i.e. ( α, β ) ⊂ R 2 ⇒ ( α, β ) ∈ R p , q . 30 / 37

  31. Multi-Parametric Eigenvalue Problem When α ∈ Spec ( A ) Lemma α i ∈ Spec ( A ) , i = 1 , . . . , n , and let − → Suppose α = � ψ i be an eigenfunction � − � ϕ , − → → � = 0 . α i of A . Assume that ψ i corresponding to the eigenvalue � Then, for any κ ∈ R � { 0 } , ( α, β ( α )) ∈ Spec p ( M ) � β ( α ) ∈ Spec ( D ⊥⊥ ) , and additionally for α ≈ � α i , there exists one ( α, β ( α )) ∈ Spec p ( M ) such α ± that β ( α ) → ±∞ as α → � i . 31 / 37

  32. Multi-Parametric Eigenvalue Problem As κ → 0 32 / 37

Recommend


More recommend