continued fraction expansions and generalized indefinite
play

Continued fraction expansions and generalized indefinite strings - PowerPoint PPT Presentation

Continued fraction expansions and generalized indefinite strings Jonathan Eckhardt Loughborough University Jonathan Eckhardt Generalized indefinite strings Operator Theory and Indefinite Inner Product Spaces TU Wien December, 2016 A.


  1. Continued fraction expansions and generalized indefinite strings Jonathan Eckhardt Loughborough University Jonathan Eckhardt Generalized indefinite strings

  2. Operator Theory and Indefinite Inner Product Spaces TU Wien – December, 2016 A. Fleige & H. Winkler, An indefinite inverse spectral problem of Stieltjes type , IEOT 87 (2017) Inverse spectral problem for regular indefinite Krein–Stieltjes strings − f ′′ = z ω f on [0 , L ] with ω = � ∞ n =0 ω n δ x n ω : Jonathan Eckhardt Generalized indefinite strings

  3. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Jonathan Eckhardt Generalized indefinite strings

  4. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Krein string ( L , ω ) Mark Krein 1950s • L is a positive number or infinity • ω is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f on [0 , L ) Jonathan Eckhardt Generalized indefinite strings

  5. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) H. Langer, Spektralfunktionen einer Klasse von Differential- operatoren zweiter Ordnung ... , Ann. Acad. Sci. Fenn. (1976) Jonathan Eckhardt Generalized indefinite strings

  6. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) H. Langer, Spektralfunktionen einer Klasse von Differential- operatoren zweiter Ordnung ... , Ann. Acad. Sci. Fenn. (1976) M. Krein & H. Langer, On some extension problems which are closely connected with the theory of Hermitian operators in a space Π κ . III. Indefinite analogues of the Hamburger and Stieltjes moment problems , Beitr¨ age Anal. (1979/80) ...for indefinite analogues of moment problems Jonathan Eckhardt Generalized indefinite strings

  7. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Relevant for completely integrable nonlinear PDEs: Camassa–Holm equation, Hunter–Saxton equation, Dym equation Eckhardt & Kostenko, An isospectral problem for global conservative multi-peakon ... , Comm. Math. Phys. (2014) Eckhardt, The inverse spectral transform for the conservative Camassa–Holm flow with ... , Arch. Ration. Mech. Anal. (2017) Jonathan Eckhardt Generalized indefinite strings

  8. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Relevant for completely integrable nonlinear PDEs: Camassa–Holm equation, Hunter–Saxton equation, Dym equation Eckhardt & Kostenko, An isospectral problem for global conservative multi-peakon ... , Comm. Math. Phys. (2014) Eckhardt, The inverse spectral transform for the conservative Camassa–Holm flow with ... , Arch. Ration. Mech. Anal. (2017) ...where υ appears because of blow-up of solutions Jonathan Eckhardt Generalized indefinite strings

  9. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Relevant for completely integrable nonlinear PDEs: Camassa–Holm equation, Hunter–Saxton equation, Dym equation Eckhardt & Kostenko, An isospectral problem for global conservative multi-peakon ... , Comm. Math. Phys. (2014) Eckhardt, The inverse spectral transform for the conservative Camassa–Holm flow with ... , Arch. Ration. Mech. Anal. (2017) ...where υ appears because of blow-up of solutions Inverse spectral theory is important Jonathan Eckhardt Generalized indefinite strings

  10. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) • Define a Weyl–Titchmarsh function m on C \ R by m ( z ) = ψ ′ ( z , 0 − ) z ψ ( z , 0) Jonathan Eckhardt Generalized indefinite strings

  11. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) • Define a Weyl–Titchmarsh function m on C \ R by m ( z ) = ψ ′ ( z , 0 − ) z ψ ( z , 0) → is a Herglotz–Nevanlinna function Jonathan Eckhardt Generalized indefinite strings

  12. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) • Define a Weyl–Titchmarsh function m on C \ R by m ( z ) = ψ ′ ( z , 0 − ) z ψ ( z , 0) → is a Herglotz–Nevanlinna function • Measure µ in the integral representation is a spectral measure � 1 λ � 1 m ( z ) = az + b + λ − z − 1 + λ 2 d µ ( λ ) , 1 + λ 2 d µ ( λ ) < ∞ R R Jonathan Eckhardt Generalized indefinite strings

  13. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) • Define a Weyl–Titchmarsh function m on C \ R by m ( z ) = ψ ′ ( z , 0 − ) z ψ ( z , 0) → is a Herglotz–Nevanlinna function • Measure µ in the integral representation is a spectral measure • For a Krein string, m is moreover a Stieltjes function , so that z �→ z m ( z ) is a Herglotz–Nevanlinna function as well Jonathan Eckhardt Generalized indefinite strings

  14. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Theorem (Eckhardt–Kostenko 2016) The mapping ( L , ω, υ ) �→ m is a homeomorphism between generalized indefinite strings and Herglotz–Nevanlinna functions Jonathan Eckhardt Generalized indefinite strings

  15. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Theorem (Eckhardt–Kostenko 2016) The mapping ( L , ω, υ ) �→ m is a homeomorphism between generalized indefinite strings and Herglotz–Nevanlinna functions Theorem (Krein 1950s, de Branges 1960s) The mapping ( L , ω ) �→ m is a homeomorphism between Krein strings and Stieltjes functions Jonathan Eckhardt Generalized indefinite strings

  16. Generalized indefinite strings Generalized indefinite string ( L , ω, υ ) • L is a positive number or infinity • ω is a real distribution in H − 1 loc [0 , L ) • υ is a non-negative Borel measure on [0 , L ) Spectral problem : − f ′′ = z ω f + z 2 υ f on [0 , L ) Theorem (Eckhardt–Kostenko 2016) The mapping ( L , ω, υ ) �→ m is a homeomorphism between generalized indefinite strings and Herglotz–Nevanlinna functions Theorem (Krein 1950s, de Branges 1960s) The mapping ( L , ω ) �→ m is a homeomorphism between Krein strings and Stieltjes functions Which m correspond to coefficients with discrete support? Jonathan Eckhardt Generalized indefinite strings

  17. Generalized indefinite strings Krein string ( L , ω ) with ω = � N n =0 ω n δ x n , 0 = x 0 < x 1 < · · · < x N < x N +1 = L , ω n ≥ 0 Jonathan Eckhardt Generalized indefinite strings

  18. Generalized indefinite strings Krein string ( L , ω ) with ω = � N n =0 ω n δ x n , 0 = x 0 < x 1 < · · · < x N < x N +1 = L , ω n ≥ 0 Differential equation − f ′′ = z ω f reduces to a difference equation f ( x ) ω 2 ω 1 ω 3 L x 1 x 2 x 3 f ( x 1 − ) = f ( x 1 +) − f ′′ = 0 f ′ ( x 1 − ) = f ′ ( x 1 +) + z ω 1 f ( x 1 ) Jonathan Eckhardt Generalized indefinite strings

Recommend


More recommend