Structured condition numbers for eigenvalue problems D. Kressner ETH Zurich, Seminar for Applied Mathematics The Second Najman Conference, Dubrovnik, 12.05.2009
Matrices Matrix Pencils Matrix Polynomials Example Complex skew-symmetric matrix: 0 1 − ϕ 0 A = , − 1 + ϕ 0 0 ≤ ϕ ≤ 1 . i 0 − i 0 Eigenvalues of A : � � 0 , 2 ϕ − ϕ 2 , − 2 ϕ − ϕ 2 . For ϕ = 0, zero is a triple eigenvalue with geometric mult. 1. D. Kressner p. 2
Matrices Matrix Pencils Matrix Polynomials Example: (Un)structured pseudospectra, ϕ = 0 . 01 0.5 0.5 0.4 0.045 0.4 0.045 0.04 0.04 0.3 0.3 0.2 0.035 0.2 0.035 0.1 0.03 0.1 0.03 0 0.025 0 0.025 −0.1 0.02 −0.1 0.02 −0.2 −0.2 0.015 0.015 −0.3 0.01 −0.3 0.01 −0.4 −0.4 0.005 0.005 −0.5 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 General perturbations Skew-symmetric perturbations (Structured pseudospectra based on [Karow’07, Karow/K.’09].) D. Kressner p. 3
Matrices Matrix Pencils Matrix Polynomials Example: (Un)structured pseudospectra, ϕ = 0 0.5 0.5 0.4 0.045 0.4 0.045 0.04 0.04 0.3 0.3 0.2 0.035 0.2 0.035 0.1 0.03 0.1 0.03 0 0.025 0 0.025 −0.1 0.02 −0.1 0.02 −0.2 −0.2 0.015 0.015 −0.3 0.01 −0.3 0.01 −0.4 −0.4 0.005 0.005 −0.5 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 General perturbations Skew -symmetric perturbations (Structured pseudospectra based on [Karow’07, Karow/K.’09].) D. Kressner p. 4
Matrices Matrix Pencils Matrix Polynomials Overview Structured condition numbers for . . . . . . simple eigenvalues of matrices . . . multiple eigenvalues of matrices . . . multiple eigenvalues of matrix pencils . . . simple eigenvalues of matrix polynomials and linearizations Motivation: structured stability radii; evaluate benefits/limitations of structure -preserving numerical methods; a posteriori estimates for structured subspace projection methods. D. Kressner p. 5
Matrices Matrix Pencils Matrix Polynomials Simple Eigenvalues of Matrices D. Kressner p. 6
Matrices Matrix Pencils Matrix Polynomials Simple eigenvalues Setting: λ simple eigenvalue of A ∈ C n × n ; x right eigenvector, y left eigenvector; normalized such that � x , y � = 1; ˆ λ eigenvalue of perturbed A + ǫ E with ǫ ≪ 1. Well -known perturbation expansion: λ = λ + ( y H Ex ) ǫ + O ( ǫ 2 ) ˆ D. Kressner p. 7
Matrices Matrix Pencils Matrix Polynomials Simple eigenvalues Condition number of λ : 1 λ − λ | : E ∈ C n × n , � E � ≤ 1 � � | ˆ κ ( λ ) := lim ǫ sup ǫ → 0 + Pert. expansion | y H Ex | : E ∈ C n × n , � E � ≤ 1 � � ⇒ = sup � x � 2 � y � 2 = provided that � · � is unitarily invariant. D. Kressner p. 8
Matrices Matrix Pencils Matrix Polynomials Simple eigenvalues Condition number of λ : 1 λ − λ | : E ∈ C n × n , � E � ≤ 1 � � | ˆ κ ( λ ) := lim ǫ sup ǫ → 0 + Pert. expansion | y H Ex | : E ∈ C n × n , � E � ≤ 1 � � ⇒ = sup � x � 2 � y � 2 = provided that � · � is unitarily invariant. Structured condition number w.r.t. smooth manifold S ⊂ C n × n 1 � λ − λ | : A + E ∈ S , � E � ≤ 1 � | ˆ κ ( λ, S ) := lim ǫ sup ǫ → 0 + Pert. expansion � � | y H Ex | : E ∈ T A S , � E � ≤ 1 ⇒ = sup Explicit formulas for various S listed, e.g., in [Karow/K./Tisseur’06]. D. Kressner p. 8
Matrices Matrix Pencils Matrix Polynomials S = complex skew -symmetric matrices � x � 2 � y � 2 κ ( λ ) = � x � 2 � y � 2 − | y T x | 2 � κ ( λ, S ) = For intro example: 3 10 unstructured cond. struct. cond. Rump’s bound on struct.cond. 2 10 1 10 0 10 −3 −2 −1 0 10 10 10 10 φ D. Kressner p. 9
Matrices Matrix Pencils Matrix Polynomials Multiple Eigenvalues of Matrices D. Kressner p. 10
Matrices Matrix Pencils Matrix Polynomials Example: 0 1 0 e − 2 π i j / 3 ǫ 1 / 3 : j = 0 , 1 , 2 � � = Λ 0 0 1 ǫ 0 0 Eigenvalues not Lipschitz continuous, only Hölder continuous [Langer/Najman’89 and’92]: Puiseux expansions for perturbed eigenvalues of analytic matrix functions. [Vishik/Lyusternik’60, Lidskii’65]: Cover special case of A − λ I ; summarized and extended in [Moro/Burke/Overton’97]. D. Kressner p. 11
Matrices Matrix Pencils Matrix Polynomials Puiseux expansions in a nutshell λ multiple eigenvalue of A ∈ C n × n ; n 1 size of largest Jordan block. Ordered Jordan decomposition � J λ � 0 P − 1 AP = , 0 ∗ s.t. J λ gathers all r 1 Jordan blocks of size n 1 belonging to λ . n 1 − 1 cols n 1 − 1 cols � � � � � ∗ � P x 1 � �� � � x r 1 � �� � � � � = ∗ · · · ∗ � · · · ∗ · · · ∗ � n 1 − 1 cols n 1 − 1 cols � � � ∗ � � P − H � �� � ∗ · · · ∗ y 1 ∗ · · · ∗ y r 1 � �� � � � � = � · · · . � Then X = [ x 1 · · · x r 1 ] , Y = [ y 1 · · · y r 1 ] collect all eigenvectors belonging to largest Jordan blocks. D. Kressner p. 12
Matrices Matrix Pencils Matrix Polynomials Puiseux expansions in a nutshell, ctd. A perturbation A + ǫ E causes the n 1 r 1 copies of λ sitting in the largest Jordan blocks bifurcate into λ + ( ξ k ) 1 / n 1 ǫ 1 / n 1 + o ( ǫ 1 / n 1 ) , where ξ k are the eigenvalues of Y H EX . See, e.g., [Langer/Najman’92, Moro/Burke/Overton’97]. Remarks: Other copies of λ bifurcate into λ + o ( ǫ 1 / n 1 ) . Some or even all eigenvalues of Y H EX can be zero! D. Kressner p. 13
Matrices Matrix Pencils Matrix Polynomials Meaning of Y H EX If A was already in Jordan form . . . A + ǫ E = λ 1 λ 1 λ λ 1 + ǫ λ 1 λ ∗ Y H EX = D. Kressner p. 14
Matrices Matrix Pencils Matrix Polynomials Unstructured Hölder condition number κ ( λ ) = ( n 1 , α ) where n 1 = size of largest Jordan block ρ ( Y H EX ) α = sup ( ρ denotes spectral radius) E ∈ C n × n � E � 2 ≤ 1 D. Kressner p. 15
Matrices Matrix Pencils Matrix Polynomials Unstructured Hölder condition number κ ( λ ) = ( n 1 , α ) where n 1 = size of largest Jordan block ρ ( Y H EX ) α = sup ( ρ denotes spectral radius) E ∈ C n × n � E � 2 ≤ 1 ρ ( Y H EX ) = ρ ( EXY H ) ≤ � E � 2 � XY H � 2 = � XY H � 2 α ≤ � XY H � 2 , � E 0 = YX H / ( � XY H � 2 ) , ρ ( Y H E 0 X ) = � XY H � 2 α ≥ � XY H � 2 , � � α = � XY H � 2 . D. Kressner p. 15
Matrices Matrix Pencils Matrix Polynomials Unstructured Hölder condition number κ ( λ ) = ( n 1 , α ) where n 1 = size of largest Jordan block, α = � XY H � 2 Structured Hölder condition number ρ ( Y H EX ) α S = sup E ∈ TAS � E � 2 ≤ 1 If α S = 0, all perturbation expansions take the form λ + o ( ǫ 1 / n 1 ) . If α S > 0, define structured Hölder condition number as κ ( λ, S ) = ( n 1 , α S ) . Difficulty: Evaluation of α S . D. Kressner p. 16
Matrices Matrix Pencils Matrix Polynomials A useful class of perturbations u , v := left/right singular vectors belonging to largest s.v. of XY H . Let E 0 ∈ C n × n such that E 0 u = β v , β ∈ C , | β | = 1 . Then ρ ( E 0 XY H ) ≥ � XY H � 2 . Sketch of proof : ρ ( E 0 XY H ) ρ ( E 0 U Σ V H ) = ρ ( V H E 0 U Σ) = �� �� β � XY H � 2 ∗ ≥ � XY H � 2 . = ρ 0 ∗ D. Kressner p. 17
Matrices Matrix Pencils Matrix Polynomials A useful class of perturbations, ctd. Structured Jordan form for A ∈ S . (see [Thompson’91], [Mehl’06], ...) ⇓ ⇓ ⇓ Induced structure in XY H . ⇓ ⇓ ⇓ Mapping theorems: E 0 u = β v with | β | = 1, � E 0 � 2 ≈ 1, E 0 ∈ T A S . (see [Rump’03], [Mackey/Mackey/Tisseur’06], ...) ⇓ ⇓ ⇓ Unstructured ≈ structured Hölder condition number Works well for complex Toeplitz, Hankel, persymmetric, Hermitian, symmetric, Hamiltonian, skew -Hamiltonian: κ ( λ ) = κ ( λ, S ) . D. Kressner p. 18
Matrices Matrix Pencils Matrix Polynomials S = complex skew -symmetric matrices Case I : Nonzero eigenvalue, r 1 = 1. � � � n 1 , � X � 2 � Y � 2 − | Y T X | 2 κ ( λ, S ) = Case IIa : Zero eigenvalue, r 1 = 1, n 1 odd. Y = X � Y H EX = 0 for all E ∈ S � α S = 0 . Case IIb : Zero eigenvalue, r 1 > 1, n 1 odd. κ ( λ, S ) = ( n 1 , √ σ 1 σ 2 ) , where σ 1 , σ 2 are the two largest singular values of XX T . Case III : Zero eigenvalue, n 1 even. κ ( λ ) = κ ( λ, S ) . D. Kressner p. 19
Matrices Matrix Pencils Matrix Polynomials Multiple Eigenvalues of Matrix Pencils D. Kressner p. 20
Recommend
More recommend