image processing ii
play

Image Processing II Computer Vision Fall 2018 Columbia University - PowerPoint PPT Presentation

Image Processing II Computer Vision Fall 2018 Columbia University Convolution Review Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90


  1. Image Processing II Computer Vision Fall 2018 Columbia University

  2. Convolution Review

  3. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  4. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  5. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  6. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  7. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  8. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  9. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  10. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  11. Convolution 0 0 0 1 G [ x , y ] 1 0 -1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  12. Convolution ( f * g )[ x , y ] = ∑ f [ x − i , y − j ] g [ i , j ] i , j g Flip LR, UD f

  13. We flip for the nice properties Commutative: F ∗ H = H ∗ F Associative: ( F ∗ H ) ∗ G = F ∗ ( H ∗ G ) Distributive: ( F ∗ G ) + ( H ∗ G ) = ( F + H ) ∗ G

  14. Fourier Transforms

  15. Vision is Repetitive

  16. Joseph Fourier A bold idea (1807): Any univariate function can be rewritten as a weighted sum of sines and cosines of di ff erent frequencies. Don’t believe it? Neither did Lagrange, Laplace, Poisson and other bigwigs Not translated into English until 1878! Wikipedia Source: James Hays

  17. How to build this 1D signal using sin waves?

  18. How to build this 1D signal using sin waves? = + + + + +…

  19. =

  20. = +

  21. = + +

  22. = + + + + +…

  23. Where we are going… = + + + + +…

  24. Background: Sinusoids A = amplitude = phase ϕ f = frequency Source: Deva Ramanan

  25. Fourier Transform Signal Amplitude Phase

  26. 2D Fourier Transform Signal Amplitude Phase

  27. Sine/cosine and circle e ift = cos ft + i sin ft sin t Amplitude : Radius of circle cos t Frequency : How fast you change t Wikipedia – Unit Circle

  28. Square wave (approx.) Mehmet E. Yavuz

  29. Sawtooth wave (approx.) Mehmet E. Yavuz

  30. Sine/cosine and circle e ift = cos ft + i sin ft sin t Amplitude : Radius of circle cos t Frequency : How fast you change t Wikipedia – Unit Circle

  31. Towards Fourier Transform g ( t ) e − 2 π ift Maps g(t) on to the unit circle with g ( t ) frequency f sin t cos t Wikipedia – Unit Circle

  32. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ sin t How I think of it: You wrap g(t) around the cos t circle with frequency f, then calculate average position of g(t) Wikipedia – Unit Circle

  33. Signal that we want to compute FT on g ( t ) = cos( t ) + 1

  34. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.001

  35. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.002

  36. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.003

  37. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.3

  38. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.4

  39. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.5

  40. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.317

  41. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 1 π

  42. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 1 2 π

  43. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 1 2 π G ( f )

  44. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t + 0.5) + 1 f = 1 2 π G ( f )

  45. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = 2 cos( t + 0.5) + 1 f = 1 G ( f ) 2 π

  46. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ Amplitude: ℜ [ G ( f )] 2 + ℑ [ G ( f )] 2 Phase: tan − 1 ℑ [ G ( f )] ℜ [ G ( f )]

  47. Inverse Fourier Transform Signal Amplitude Phase

  48. Fourier Transform: G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ Inverse Fourier Transform: g ( t ) = ∫ ∞ G ( f ) e 2 π ift dt −∞

  49. Frequencies Images are 64x64 pixels. The wave is a cosine (if phase is zero). Source: Bill Freeman

  50. FT has peaks at spatial frequencies of repeated structure Image Amplitude Source: Deva Ramanan

  51. Source: Deva Ramanan

  52. Source: Deva Ramanan

  53. Source: Deva Ramanan

  54. Lunar Orbital Image (1966) Amplitude Source: Deva Ramanan

  55. Lunar Orbital Image (1966) Amplitude Remove Peaks Source: Deva Ramanan

  56. Let’s Practice

  57. Some important Fourier transforms Image Magnitude DFT Phase DFT Images are 64x64 pixels. Source: Bill Freeman

  58. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  59. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  60. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  61. Image Magnitude DFT Scale Small image 
 details produce content in high spatial frequencies Source: Bill Freeman

  62. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  63. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  64. Image Magnitude DFT Orientation A line transforms to a line oriented perpendicularly to the first. Source: Bill Freeman

  65. Game: find the right pairs Images C A B DFT 
 magnitude 1 2 3 fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size) Source: Bill Freeman

Recommend


More recommend