hybrid cls opamp zcbc
play

Hybrid CLS-Opamp/ZCBC Pipelined ADC Using a 300mV Output Swing - PowerPoint PPT Presentation

A 1.4V Signal Swing Hybrid CLS-Opamp/ZCBC Pipelined ADC Using a 300mV Output Swing Opamp Benjamin Hershberg Skyler Weaver Un-Ku Moon Oregon State University, Corvallis, OR Preview 1. Background Correlated Level Shifting


  1. A 1.4V Signal Swing Hybrid CLS-Opamp/ZCBC Pipelined ADC Using a 300mV Output Swing Opamp Benjamin Hershberg Skyler Weaver Un-Ku Moon Oregon State University, Corvallis, OR

  2. Preview 1. Background • Correlated Level Shifting • Zero-Crossing Based Circuits 2. Hybrid CLS-Opamp/ZCBC Structure 3. Dynamic Zero-Crossing Detector 4. Measurement Results

  3. Correlated Level Shifting (CLS) Ф A V o Ф S Ф 1 C CLS V i Ф 2 Ф 1 Ф S Ф A V CMI V CMO (+/-V r ,0) Ф S Ф A Ф 1 Ф 2  Finite opamp gain error becomes 1/A 2  Opamp output tied to different nodes in Φ 1 and Φ 2 Gregoire, ISSCC 2008

  4. CLS – Basic Operation Ф A V o Ф S Ф 1 C CLS V i Ф 2 Ф 1 Ф S Ф A V CMO V CMI (+/-V r ,0) Ф 1 : Opamp Design Requirements  opamp charges output Ф 1 Ф 2 directly Output Swing Large Small  processes full signal Slew Rate Large Small

  5. CLS – Basic Operation Ф A V o Ф S Ф 1 C CLS V i Ф 2 Ф 1 Ф S Ф A V CMO V CMI (+/-V r ,0) Ф 2 : Opamp Design Requirements  opamp is level shifted to Ф 1 Ф 2 mid-rail Output Swing Large Small  processes error only Slew Rate Large Small

  6. Observation  Use separate charging devices for Ф 1 and Ф 2  Optimized design for each phase • Increase overall accuracy & efficiency  For this test chip: • Ф 1 : Zero-crossing based circuit (ZCBC) • Ф 2 : Double-cascoded Opamp Design Requirements telescopic opamp Ф 1 Ф 2 Output Swing Large Small Slew Rate Large Small

  7. Ф 1 : Zero-crossing based circuit Charges output until input I src virtual ground condition is detected V x Ф PC V CM Slewing efficiency V CM V SS V CM Easy to turn off during Ф 2 ZCD No forced feedback overshoot V CM Linearity and reliability challenges V X Ф PC Sepke, ISSCC 2006

  8. Ф 1 : Zero-crossing based circuit Charges output until input I src virtual ground condition is detected V x Ф PC V CM Slewing efficiency V CM V SS V CM Easy to turn off during Ф 2 ZCD No forced feedback overshoot V CM Linearity and reliability challenges Ф 1 : Fast, coarse charging V X Φ 2 : High accuracy feedback Ф PC Sepke, ISSCC 2006

  9. Ф 2 : Telescopic Opamp V DD High Gain Low Swing V ctrl High Speed Low Slew V bp2 Low Power V bp3 V o - V o + V bn4 V bn3 V i + V i - V bn1 V SS

  10. Ф 2 : Telescopic Opamp V DD High Gain Low Swing V ctrl High Speed Low Slew V bp2 Low Power V bp3 V o - V o + V bn4 Effective Gain 35dB (A Ф 1 ) V bn3 + 75dB (A Ф 2 ) V i + V i - 110 dB V bn1 V SS

  11. Hybrid CLS-Opamp/ZCBC V SS V DD S PC V i+ (n+1) ( Ф PC ) I P Ф A V o+ Ф S V x+ V i+ Ф S Ф A Ф S +V ref V cm V CM -V ref Ф A Ф S Ф S V i- Ф S V x- Ф A V o- I N S PC V i- (n+1) ( Ф PC ) V DD V SS

  12. Hybrid CLS-Opamp/ZCBC V SS V DD S PC V i+ (n+1) ( Ф PC ) I P Ф A V o+ Ф S V x+ V i+ Ф S D C Ф A Ф S +V ref V cm V CM -V ref Ф A Ф S Ф S V i- Ф S V x- Ф A V o- I N S PC V i- (n+1) ( Ф PC ) V DD V SS

  13. Hybrid CLS-Opamp/ZCBC V SS V DD S PC V i+ (n+1) ( Ф PC ) I P Ф A V o+ Ф S C CLS V x+ V i+ Ф S D C Ф A Ф S +V ref V cm S OP V CM -V ref Ф A Ф S Ф S V CM S OP V i- Ф S V x- C CLS Ф A V o- I N S PC V i- (n+1) ( Ф PC ) V DD V SS

  14. Hybrid CLS-Opamp/ZCBC V SS V DD S PC V i+ (n+1) ( Ф PC ) I P Ф A V o+ Ф S C CLS V x+ C DAC V i+ Ф S D C Ф A Ф S S DAC +V ref V cm V DD V SS S OP V CM -V ref Ф A Ф S Ф S S DAC V CM S OP V i- Ф S V x- C DAC C CLS Ф A V o- I N S PC V i- (n+1) ( Ф PC ) V DD V SS

  15. V X- V SS V DD S PC V i+ (n+1) ( Ф PC ) I P V o+ Ф A V X+ Ф S C CLS V x+ C DAC Ф S V i+ D C Ф A Ф S S DAC +V ref V cm V DD V SS S OP V CM -V ref Ф A Ф S Ф S S DAC V CM S OP Ф S V i- C DAC V x- C CLS Ф A V o- I N S PC V i- (n+1) ( Ф PC )  Pre-charge switches closed V DD V SS  ZCD & current sources begin to turn on  Opamp output shorted to V CM  C DAC set to track output

  16. V X- V SS V DD S PC V i+ (n+1) ( Ф PC ) I P V o+ Ф A V X+ Ф S C CLS V x+ C DAC Ф S V i+ D C Ф A Ф S S DAC +V ref V cm V DD V SS S OP V CM -V ref Ф A Ф S Ф S S DAC V CM S OP Ф S V i- C DAC V x- C CLS Ф A V o- I N S PC V i- (n+1) ( Ф PC )  ZCBC coarse charging V DD V SS  When ZCD trips: • turns off current sources • activates asynchronous timing block

  17. V X- V SS V DD S PC V i+ (n+1) ( Ф PC ) I P V o+ Ф A V X+ Ф S C CLS V x+ C DAC Ф S V i+ D C Ф A Ф S S DAC +V ref V cm V DD V SS S OP V CM -V ref Ф A Ф S Ф S S DAC V CM S OP Ф S V i- C DAC V x- C CLS Ф A V o- I N S PC V i- (n+1) ( Ф PC ) V DD V SS  Overshoot cancellation  Δ V on bottom plate of C DAC cancels overshoot

  18. V X- V SS V DD S PC V i+ (n+1) ( Ф PC ) I P Ф A V X+ Ф S C CLS V x+ Ф S V i+ D C Ф A Ф S +V ref V cm S OP V CM -V ref Ф A Ф S Ф S V CM S OP Ф S V i- V x- C CLS Ф A I N S PC V i- (n+1) ( Ф PC ) V DD V SS  Opamp fine settling  Shorting switch (S OP ) opens  C DAC disconnects from output (minimize load)

  19. Overshoot Cancellation V X- signal independent signal dependent V X+  Pure ZCBC: signal independent portion becomes DC offset  Hybrid structure: opamp must cancel all overshoot

  20. Overshoot Cancellation V X- Opamp virtual ground condition: Vx- = Vx+ V X+ Opamp will try to cancel all overshoot present

  21. Overshoot Cancellation V X- opamp outputs V X+ No cancellation: opamp output saturates

  22. Overshoot Cancellation V X- signal independent signal dependent V X+ A solution: cancel all predictable overshoot

  23. Overshoot Cancellation V X- opamp outputs V X+ Opamp only processes signal dependent error

  24. Overshoot Cancellation  Charge cancellation DAC • Testability • No offset accumulation • Integrator compatible (e.g. ΔΣ )  Other possibilities to mitigate overshoot • ZCD input offset • Opamp input offset • Other DAC topologies

  25. Dynamic ZCD V o - Voltage V i + V i - time t d Current (I tail ) time low g m ok need high g m Concept: redistribute current usage to maximize useful g m

  26. Dynamic ZCD V DD Φ PC V o- V o+ I ref V i+ V i- Φ PC C FB M 1 M 3 V b I tail M 2 V SS

  27. Dynamic ZCD V DD V o - Voltage V i + Input V i - V o- V o+ time off t d I ref V i+ V i- V o - Output Voltage Φ PC V b C FB M 1 M 3 V b time t d I tail off M 2 Current (I tail ) V SS I tail time t d Ф PC Step 1: Pre-charge

  28. Dynamic ZCD V DD V o - Voltage V i + Input V i - V o- V o+ time off t d V i+ V i- V o - Output Voltage V b C FB M 1 V b time t d I tail off M 2 Current (I tail ) V SS I tail time t d A ZCD (V i+ - V i- ) > (V o+ - V o- ) Step 2: Power conservation

  29. Dynamic ZCD V DD V o - Voltage V i + Input V i - V o- V o+ time off t d V i+ V i- V o - Output Voltage V b C FB M 1 V b time t d I tail off M 2 Current (I tail ) V SS I tail time t d A ZCD (V i+ - V i- ) < (V o+ - V o- ) Step 3: High g m

  30. Dynamic ZCD V DD V o - Voltage V i + Input V i - V o- V o+ time off t d V i+ V i- V o - Output Voltage V b C FB M 1 V b time t d I tail =0 off M 2 Current (I tail ) V SS I tail time t d Step 4: Shutdown

  31. Dynamic ZCD  Strongly correlated design variables • A ZCD • C FB • I SRC /C LOAD  Best choice dependent on specific design targets

  32. ZCD Variation Tolerance  In test, I ref varied from 6.5uA - 50uA with no impact on performance • Only limited by tuning range of test board • Current bias, voltage bias, or self-bias feasible  Higher g m at critical instant can suppress certain internal and external variations  Floating bias • Blocks certain transient effects • Vulnerable to others

  33. ZCD Power Efficiency  Your mileage will vary  Depends on design specifications • Converter accuracy • ZCD time delay • Current source slew rate  For this test ADC: simulation shows 4x improvement over state of the art ( Brooks, ISSCC 2009 )  In general, the slower the ramp, the more dramatic the savings

  34. Chip Micrograph  10 identical 1.5b stages  1.5b backend flash

  35. Measured Results

  36. Measured Results SNDR vs. Fin 75 70 dB 65 60 -1 0 10 10 Fin / Fs f nyquist

  37. Measured Results

  38. Key Benefits  Accuracy - Extremely high effective gain, even in modern processes.  Robustness - Relax ZCBC design by adding linear feedback.  Efficiency - Amplification devices optimized for unique requirements. Efficient charging with ZCBC. High gain, single stage opamp w/o gain boosting amplifiers or compensation.

  39. Acknowledgements  This work was funded by the Semiconductor Research Corporation and the Center for Design of Analog-Digital Integrated Circuits.  The authors would like to thank TowerJazz Semiconductor for providing fabrication. Additional thanks to Peter Kurahashi, Sasidhar Lingam, Phil Crosby, Arnie Frisch, Ed Hershberg, Dianne Glenn and members of the OSU AMS lab for their valuable contributions and insight.

  40. Additional Materials

  41. DNL DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODE 0.5 DNL (LSB) 0 -0.5 0 256 512 768 1024 1280 1536 1792 2048 DIGITAL OUTPUT CODE

  42. INL INTEGRAL NONLINEARITY vs. DIGITAL OUTPUT CODE 3 2 1 INL(LSB) 0 -1 -2 -3 0 256 512 768 1024 1280 1536 1792 2048 DIGITAL OUTPUT CODE

Recommend


More recommend