how much crypto in one microjoule
play

How much crypto in one microJoule? Ingrid Verbauwhede - PDF document

Real World Crypto Stanford, CA January 2013 How much crypto in one microJoule? Ingrid Verbauwhede ingrid.verbauwhede-at-esat.kuleuven.be KU Leuven, COSIC Acknowledgements: Current and former Ph.D. students at UCLA and KU Leuven KU Leuven


  1. Real World Crypto – Stanford, CA January 2013 How much crypto in one microJoule? Ingrid Verbauwhede ingrid.verbauwhede-at-esat.kuleuven.be KU Leuven, COSIC Acknowledgements: Current and former Ph.D. students at UCLA and KU Leuven KU Leuven - COSIC Real World Crypto 2013 - 1 Stanford, January 2013 Light weight crypto for IoT • Example: Medical Internet of Things • Design constraints: area - time - energy/power • Energy – Flexibility trade-off • ASIC design, hardware specialization • Cost of crypto primitives • Cost of countermeasures KU Leuven - COSIC ECRYPT - VAMPIRE 2012 - 2 Antwerp, November 2012 Ingrid Verbauwhede, KU Leuven - COSIC 1

  2. Real World Crypto – Stanford, CA January 2013 Medical Internet of Things IMEC: Human++, NERF - brain stimulant Deep Brain stimulation [ Sources: ¡J. ¡Rabaey, ¡National ¡Institutes ¡of ¡Health, ¡Neurology ¡journal] ¡ KU Leuven - COSIC Real World Crypto 2013 - 3 Stanford, January 2013 Medical implants • Power is limited – Cooling!! – Implanted devices only temperature ∆ < 1 ° C • Energy Battery is limited – Pace maker battery is not rechargeable – One AAA battery is 1300 … 5000 Joules • How much crypto in one micro Joule or 10 microWatt ? KU Leuven - COSIC Real World Crypto 2013 - 4 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 2

  3. Real World Crypto – Stanford, CA January 2013 Other applications • Smartcards • RFID tags • Smart meters • Keys • … Ari Juels: RFID tracking problem KU Leuven - COSIC Real World Crypto 2013 - 5 Stanford, January 2013 IoT Devices NEED BOTH • Efficient, lightweight implementations – Within power, area, timing budgets – Public key: 2048 bits RSA, 200 bit ECC on 8 bit µ C and 100 µ W – Public key on a passive RFID tag • Trustworthy implementation – Resistant to attacks – Active attacks: probing, power glitches, JTAG scan chain – Passive attacks: side channel attacks KU Leuven - COSIC Real World Crypto 2013 - 6 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 3

  4. Real World Crypto – Stanford, CA January 2013 Hardware Design Parameters Embedded security: Area, delay, power, energy , physical security KU Leuven - COSIC Real World Crypto 2013 - 7 Stanford, January 2013 Power and Energy are not the same! • Power = P = I x V (current x voltage) (= Watt) – instantaneous – Typically checked for cooling or for peak performance • Energy = Power x execution time (= Joule) – Battery content is expressed in Joules – Gives idea of how much Joules to get the job done Low power processor ≠ low energy solution ! Power Power Time Time KU Leuven - COSIC Real World Crypto 2013 - 8 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 4

  5. Real World Crypto – Stanford, CA January 2013 Cost of crypto primitives Crypto for 1 micro-Joule: Energy - flexibility trade-off KU Leuven - COSIC Real World Crypto 2013 - 9 Stanford, January 2013 Illustrate with examples • Example 1: Secret Key: AES, KATAN • Example 2: NIST SHA3 • Example 3: Public key, ECC for RFID • Example 4: cost of physical security KU Leuven - COSIC Real World Crypto 2013 - 10 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 5

  6. Real World Crypto – Stanford, CA January 2013 Example: Rijndael/AES S S S S S S S S S S S S S S S S round Key Schedule round S S S S S S S S S S S S S S S S MixColumns MixColumns MixColumns MixColumns round . . . . . round • key length: 16/24/32 bytes • block length: 16/24/32 bytes KU Leuven - COSIC Real World Crypto 2013 - 11 Stanford, January 2013 Throughput – Energy numbers Throughput Power Figure of Merit AES 128bit key (Gb/s/W = Gb/J) 128bit data 0.18um CMOS 11 (1/1) 3.84 Gbits/sec 350 mW FPGA [1] 1.32 Gbit/sec 490 mW 2.7 (1/4) Intel ISA for AES [6] 95 W 0.34 (1/33) 32 Gbit/sec ASM StrongARM [2] 31 Mbit/sec 240 mW 0.13 (1/85) 0.015 (1/800) Asm Pentium III [3] 41.4 W 648 Mbits/sec C Emb. Sparc [4] 133 Kbits/sec 0.0011 (1/10.000) 120 mW Java [5] Emb. Sparc 450 bits/sec 0.0000037 (1/3.000.000) 120 mW [ 1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator [2] Dag Arne Osvik: 544 cycles AES – ECB on StrongArm SA-1110 [3] Helger Lipmaa PIII assembly handcoded + Intel Pentium III (1.13 GHz) Datasheet [4] gcc, 1 mW/MHz @ 120 Mhz Sparc – assumes 0.25 u CMOS [5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc – assumes 0.25 u CMOS [6] Shay Gueron, Intel KU Leuven - COSIC Real World Crypto 2013 - 12 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 6

  7. Real World Crypto – Stanford, CA January 2013 Match between algorithm & platform Application Close the gap: • Dedicated HW: ASIC, SOC • Programmable HW: FPGA ASIC Cost • Dedicated instructions, hand- Power coded assembly Fixed • Compiled code • JAVA on virtual machine, ??? compiled on a real machine Platform General Purpose Energy - flexibility trade-off KU Leuven - COSIC Real World Crypto 2013 - 13 Stanford, January 2013 1 microJoule • 11000 bits AES (optimized version) • 3000 to 10K gates area = small KU Leuven - COSIC Real World Crypto 2013 - 14 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 7

  8. Real World Crypto – Stanford, CA January 2013 Light weight crypto: KATAN - KTANTAN CHES 2009: De Canniere, Dunkelman, Knezevic 80 bits key 32 - 48 - 64 bits block 254 rounds Max 1000 gates Key size Block size Datapath + Control Memory “ redundant ” logic [slide input: Miroslav Kne ž evi ć ] KU Leuven - COSIC Real World Crypto 2013 - 15 Stanford, January 2013 1 microJoule • 110000 bits KATAN, <1000 gates • 11000 bits AES (ASIC) 3000 to 10K gates ‘ light ’ ≠ low Joules only small area KU Leuven - COSIC Real World Crypto 2013 - 16 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 8

  9. Real World Crypto – Stanford, CA January 2013 SHA3 – competition: One size fits all KU Leuven - COSIC Real World Crypto 2013 - 17 Stanford, January 2013 SHA 3 ASIC (90nm) synthesis Throughput Mbits Gate Energy (@250MHz) (GE) (pJ/bit) SHA256 2000 12K 2 Blake 6000 30K 2.5 Grøstl 13000 86K 2.5 JH 4600 30K 2 Keccak 15000 30K 1 Skein 6700 43K 6 [slide input: Miroslav Kne ž evi ć ] KU Leuven - COSIC Real World Crypto 2013 - 18 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 9

  10. Real World Crypto – Stanford, CA January 2013 Keccak in SW • Keccak on ATtiny45 at 8MHz • 540 microWatt at 1MHz (spec) • 716 * 10^3 clock cycles to hash 500 Bytes • Result: 100 pJ/bit • So again: SW is 100 less efficient than HW J. Balasch, B. Ege, Th. Eisenbarth, B. Gérard, Z Gong, T Güneysu, S Heyse, S Indesteege, S Kerckhof, F Koeune, T Nad, T Plos, T Pöppelman, F Regazzoni, F Standaert, G Van Assche, I von Maurich, L van Oldeneel Open Source Implementations of Hash Functions in an Atmel AtTiny45, ECRYPT. KU Leuven - COSIC Real World Crypto 2013 - 19 Stanford, January 2013 1 microJoule • 110000 bits KATAN, < 1000 gates • 11000 bits AES encryption, 3000 gates • 1000 bits Keccak hash, 30K gates KU Leuven - COSIC Real World Crypto 2013 - 20 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 10

  11. Real World Crypto – Stanford, CA January 2013 Example 3:Public key - Elliptic Curve Cryptography Push for lowest energy to fit budget of IoT KU Leuven - COSIC Real World Crypto 2013 - 21 Stanford, January 2013 Challenge: low power public key … Address at all design abstraction levels! • Protocol : asymmetric (most work for the reader) Scalable • Algorithm : Elliptic curve (163 bits) Tracking Cloning instead of RSA (min 1024 bits) • Field Operation : Binary and not Prime Binary field 2^163 fields: easier field operations Elliptic curve • Projective coordinate system: (X, Y, Projective Z) instead of (x,y): no field inversions Java Montgomery ladder JCA • Special coordinate system : no need to store Y coordinates (Lopez-Dahab) Common Z coord JVM and common Z (only one Z coordinate) 8 bit uP CPU REG MALU • Minimize storage : Only 5 registers MEM MEM (with mult/add/square unit) or 6 Vcc Vcc registers (with mult/add-only unit) compared to 9+ registers before. D Q D Q CLK CLK KU Leuven - COSIC Real World Crypto 2013 - 22 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 11

  12. Real World Crypto – Stanford, CA January 2013 Results • Results: ECC co-processor that can compute: – ECC point multiplications (163 by 4) – Scalar modular operations (8 bit processor with redundancy) • Schnorr (secure ID transfer, but no tracking protection): one PM • More advanced protocols: up to four PM on tag • 14K gates, 79K cycles • At 500 KHz, corresponds to 30 microWatt and 158 msec • One point multiplication = 4.8 microJoule KU Leuven - COSIC Real World Crypto 2013 - 23 Stanford, January 2013 1 microJoule • 110000 bits KATAN • 11000 bits AES encryption • 1000 bits KECCAK hash • 1/5 of one point multiplication Still to add physical security … KU Leuven - COSIC Real World Crypto 2013 - 24 Stanford, January 2013 Ingrid Verbauwhede, KU Leuven - COSIC 12

Recommend


More recommend