high solids anaerobic digestion of the organic fraction
play

High solids Anaerobic Digestion of the Organic Fraction of Municipal - PowerPoint PPT Presentation

MARIE SK ODOWSKA CURIE EUROPEAN JOINT DOCTORATE (EJD) IN ADVANCED BIOLOGICAL WASTE TO ENERGY TECHNOLOGIES (ABWET) PhD Project: Hi High gh Soli Solid Fe Fermentat tation and/ and/or or Anaer Anaerobic bic Di Digestion ion of


  1. MARIE SK Ł ODOWSKA ‐ CURIE EUROPEAN JOINT DOCTORATE (EJD) IN ADVANCED BIOLOGICAL WASTE ‐ TO ‐ ENERGY TECHNOLOGIES (ABWET) PhD Project: Hi High gh ‐ Soli Solid Fe Fermentat tation and/ and/or or Anaer Anaerobic bic Di Digestion ion of of So Solid lid Wa Waste High ‐ solids Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: From Experimental Setup to Model Development Author: Vicente Pastor Poquet 1,2,3 Main Supervisor: Giovanni Esposito 1 Co ‐ Supervisors: Stefano Papirio 1 ; Jean ‐ Philippe Steyer 3 ; Eric Trably 3 ; Jukka Rintala 2 ; Renaud Escudié 3 6 th International Conference on Sustainable Solid Waste Management , Naxos Island, Greece, Thursday 14 th June 2018

  2. Sum Summary ary Introduction Objectives Methodology Batch Experiments Semi ‐ continuous Experiments HS ‐ AD Model Conclusions Future Perspectives 6 th International Conference on Sustainable Solid Waste Management 1/14

  3. High Hi gh ‐ so solids lids Anaer Anaerobic bic Di Digestion (H (HS ‐ AD) AD) Total Solids (TS) ≥ 10% HYDROLYSI S ACI DOGEN ESI S ACETOGENESI S METHANOGENESI S H 2 Methane Particulate & Soluble & CO 2 CH 4 Biodegradable Biodegradable Volatile Fat ty Acids Material Material (i.e. Valeric, Butyric, BI OGAS (i.e. OFMSW, AW, (i.e. Sugars, AA, Propionic, etc.) Manure, etc.) LCFA, etc.) ( CO 2 ) gas Acetic Acid ADVANTAGES SETBACKS ‐ Smaller Reactor Size ‐ Long Retention Times ‐ Higher Organic Loads ‐ Reduced Kinetic Rates Economy Optimization!!! ‐ Minimal Water Dilution ‐ Process Instability ‐ Digestate De ‐ watering ‐ Higher Requirements Savings for Pumping and ‐ Reduction on Heating Mixing Requirements 6 th International Conference on Sustainable Solid Waste Management 2/14

  4. Or Organic nic Fr Fraction action of of Municipal Municipal Solid Solid Wa Waste (O (OFMSW) OFMSW SOME CONSIDERATIONS ‐ Adequated Physical ‐ Chemical Composition (i.e. TS, biodegradability) ‐ Environmental Problem (i.e. GHG emission) ‐ (EU) Legislation Requiring Bio ‐ Treatment ‐ High Energy + Nutrients + Water Recovery Potential ‐ Global Availability With or without adding ‐ No Pretreatment Required Green Waste ‐ Potential Green Waste Addition (i.e. regionality, seasonality, legislation) ‐ Low Inhibitory/Inert Content (i.e. heavy metals, plastics) ‐ Results Extrapolation (i.e. agricultural waste, manure ‐ Reduced Porosity 6 th International Conference on Sustainable Solid Waste Management 3/14

  5. Need Need fo for a HS HS ‐ AD AD Mo Mode del Water Matrix + Ions ‐ + ‐ + Microorganisms ‐ + + ‐ ‐ Soluble Solids Substrates Gases Complexity Reduction Needed!!!! 6 th International Conference on Sustainable Solid Waste Management 4/14

  6. Obj Objectiv ctives es Understand the effects of TS increase in HS ‐ AD of OFMSW • • Develop a HS ‐ AD model for homogenized reactors 6 th International Conference on Sustainable Solid Waste Management 5/14

  7. Methodol Methodology ogy 0,7 100 Psychrophile Mesophile Thermophile Maximum Growth Rate, μ m (h ‐ 1 ) 0,6 Free Ammonia, NH 3 (%) 80 T=55ºC Simultaneous Development of 0,5 T=35ºC 60 T=20ºC 0,4 ‐ Batch experiments 0,3 40 0,2 ‐ Semi ‐ continuous experiments 20 0,1 ‐ ADM1 ‐ based model 0 0 6 7 8 9 10 11 0 10 20 30 40 50 60 pH Temperature (ºC) SUBSTRATE CO ‐ SUBSTRATE TEMPERATURE INOCULUM OFMSW Beech Sawdust Thermophilic (55°C) Pre ‐ adapted ‐ High Biodegradability ‐ Simulated Green Waste ‐ Faster Kinetic Rates ‐ OFMSW ‐ Nutrient Content ‐ Increase TS content ‐ Process Economy ‐ Temperature ‐ NH 3 Inhibition ‐ NH 3 Inhibition 6 th International Conference on Sustainable Solid Waste Management 6/14

  8. Batch Experim Ba Experiments Se Setu tup 1. TS Increase ISR Operational TS No. Test Substrate (g VS/g VS) (%) 1 0.5 10.2, 12.6, 15.6, 19.2, 23.3, 28.3 & 33.6 Dried OFMSW 2 1.0 9.5, 13.6, 18.4 & 24.0 TS Increase 3 1.5 10.8, 13.4, 16.4 & 19.6 Dried OFMSW + 4 0.2 10.0, 15.0, 20.0, 24.7 & 30.2 Sawdust H 2 O 5 Dried OFMSW 1.0 15.0 TS Sacrifice Dried OFMSW + 6 0.6 19.4 Sawdust - OFMSW 2.0 2.9 BMP - Sawdust 1.0 4.1 2. Sacrifice Tests Beech Sawdust 55°C ‐ Dried OFMSW x15 One replicate opened at a time for physical ‐ chemical analyses (i.e. TS & VFA). + Centrifuged Inoculum 6 th International Conference on Sustainable Solid Waste Management 7/14

  9. Ba Batch Experim Experiments Re Results OFMSW (ISR=0.5) OFMSW (ISR=1.0) OFMSW (ISR=1.5) Codigestion (ISR=0.16) 300 Mono ‐ digestion Experiment 3 MAIN CONCLUSIONS (NmL CH4/g VSsubs) A 250 CH4 Yield 200 CH4 Valeric Butyric Propionic 150 • All biodegradability Acetic TAN NH3 100 0,5 indicators affected by Total and Free Ammonia Nitrogen 50 8 initial TS; COD Conversion (g COD/g VS) 0 0,4 80 Total Solid Removal B • NH 3 reduces the 6 60 methane yield; (g N/kg) (%) 0,3 40 4 • Compromise needed 20 0,2 between TS, ISR, 0 alkalinity and nitrogen 0,6 2 0,1 Total COD Conversion content. (g COD/g VSadded) 0,5 C 0,4 0,0 0 0,3 10,5 13,5 16,5 20 0,2 Initial Total Solids (%) 0,1 0,0 8 13 18 23 28 33 6 th International Conference on Sustainable Solid Waste Management 8/14 Initial Total Solids (%)

  10. Sem Semi ‐ continuous inuous Experim Experiments Se Setu tup Experimental Setup MONO ‐ DIGESTION OFMSW CO ‐ DIGESTION OFMSW + SAWDUST 1. Reactor Body Organic Loading Rate Organic Loading Rate 6 15 15 OLR_A 2. Reactor Head OLRofmsw_A (g VS/kg ∙ d) (g VS/kg ∙ d) 3. Feeding Port 10 3 10 4. Gas Output 5 5. Gas Measuring Port 6 6 5 5 6. Valves 4 2 0 0 Mass Retention Time Mass Retention Time 240 240 (days) 160 160 (days) 80 80 Operation: 1 Drag ‐ and ‐ Fill Mode 0 0 0 20 40 60 80 100 0 20 40 60 80 100 120 Time (days) Time (days) Compromise between TS removal and TAN/VFA buildup Uncoupling: Effluent Mass = Influent Mass – Biogas Mass 6 th International Conference on Sustainable Solid Waste Management 9/14

  11. Sem Semi ‐ continuous inuous Experim Experiments Re Results MONO ‐ DIGESTION OFMSW CO ‐ DIGESTION OFMSW + SAWDUST CONCLUSIONS 30 Total Solids 30 Total Solids (%) 20 20 (%) HS ‐ AD • Uncoupling was not HS ‐ AD 10 10 sufficient to avoid overload 0 0 Ammonia Nitrogen Ammonia Nitrogen and acidification; Total and Free Total and Free 5 5 TAN_A (g N/kg) (g N/kg) FAN_A 3 3 • Overload was related to TAN_A FAN_A 2 rapid substrate 2 biodegradability and NH 3 0 0 9 Volatile Fatty Acids (mg/kg) 9 inhibition; Volatile Fatty Acids (mg/kg) 8000 8000 8 8 • Acidification can be 6000 6000 controlled by including GW pH pH 7 7 4000 4000 in OFMSW. 6 6 2000 2000 0 5 0 5 0 20 40 60 80 100 0 20 40 60 80 100 120 Time (days) Time (days) Acetic Propionic Butyric Valeric pH Acetic Propionic Butyric Valeric pH 6 th International Conference on Sustainable Solid Waste Management 10/14

  12. HS ‐ AD HS AD Mo Model del Dev Developm pmen ent M Global0 , TS 0 , VS 0 ρ Solids , m Influent, Initialize Model ρ Solvent m Effluent M Solids0 , M Solvent0 , M Inerts0 HYPOTHESES ρ Global0 Q Influent , 1) Homogenized Reactors; V Global0 Q Effluent 2) Porosity and Transport Processes Disregarded; Gas Phase : 3) Specific Weights Constant; m Biogas , m Vapor 4) Biochemical Reactions occur in Water. Mass Balances: Iterative Loop - Derivatives M Global , M Solids , M Solvent , M Inerts , TS, VS, Q Effluent = Q Influent – ρ Global , V Global K·( V Setpoint – V Global ) Bio-Physic-Chemistry: Apparent Concentrations X t,i , S t,i ���� No Yes � �,� ���� �� ����� � �,�,��� � �� ������� �� ������� 1 � �� Last Effluent �� ����� No Iteration Recalculation Soluble and Particulate Mass Balance �� �,� 1 � �������� � � �,� � � �������� � �,� � �� Yes ������ � � � � �,� � � � �,���� � �� � � ������ � �� ������ ������ End 6 th International Conference on Sustainable Solid Waste Management 11/14

  13. HS HS ‐ AD AD Mo Model del Re Results Model Verification Model Calibration HRT_No Control HRT_Control CH4 Experimental CH4 Simulated CONCLUSIONS Hydraulic Retention Time OLR_No Control OLR_Control TS Experimental TS Simulated 30 Methane Production 1,0 18 Organic Loading Rate 90 25 15 0,8 Total Solids (%) • Need for effluent control (kg COD/m 3 ∙ d) (NmL CH 4 ) 20 70 12 (days) 0,6 in continuous simulations; 15 9 50 0,4 10 6 30 0,2 5 3 • Adequate reactor 0 10 0,0 0 mass/volume content and 0 20 40 60 80 100 0 50 100 150 200 TS/VS simulation; Volumetric Influent/Effluent Total and Volatile Solids (%) 0,4 35 180 30 VFA Total (g COD/kg) Ammonia Nitrogen 30 170 0,3 • TS concentration effect (mol N/kg) 25 160 25 20 (apparent concentrations) (m 3 /d) 0,2 150 15 needed in HS ‐ AD. 140 20 10 0,1 130 5 0,0 0 120 15 0 20 40 60 80 100 0 50 100 150 200 Time (days) Time (days) TAN Experimental TAN Simulated Qinfluent Qeffluent TS VS VFA Experimental VFA Simulated 6 th International Conference on Sustainable Solid Waste Management 12/14

Recommend


More recommend