hig igh quality ele lectron generation usin ing soli lid
play

Hig igh quality ele lectron generation usin ing soli lid or r - PowerPoint PPT Presentation

Hig igh quality ele lectron generation usin ing soli lid or r li liquid target dri riven by X ray la laser Ronghao Hu 1,4 , Zheng Gong 1 , Jinqing Yu 1 , Yinren Shou 1 , Zhengming Sheng 2 , Toshiki Tajima 3 & Xueqing Yan 1 1 Peking


  1. Hig igh quality ele lectron generation usin ing soli lid or r li liquid target dri riven by X ray la laser Ronghao Hu 1,4 , Zheng Gong 1 , Jinqing Yu 1 , Yinren Shou 1 , Zhengming Sheng 2 , Toshiki Tajima 3 & Xueqing Yan 1 † 1 Peking University, China 2 University of Strathclyde, U.K. 3 University of California, Irvine, U.S.A. 4 Sichuan University, China † x.yan@pku.edu.cn June 24, 2019 Workshop (Fermilab, Chicago) page 1

  2. Acknowledgement Dr. Remi Lehe June 24, 2019 Workshop (Fermilab, Chicago) page 2

  3. Opportunities provided by optical technology Schwinger limit 10 18 V/m E field(V/m) πœ‡ = 2πœŒβ„π‘‘/𝜁 𝛿 10 βˆ’6 π‘œπ‘› 10 14 10 13 10 βˆ’3 π‘œπ‘› 𝛿 -ray 10 12 10 11 1 π‘œπ‘› X-ray ultraviolet 10 10 1 πœˆπ‘› visible 10 9 infrared 10 8 1 𝑛𝑛 microwave Mourou, G.A., Tajima, T. and Bulanov, S.V., 2006.. Reviews of modern physics , 78 (2), p.309. June 24, 2019 Workshop (Fermilab, Chicago) page 3

  4. Laser wakefield acceleration (LWFA) laser wakefield electron energy en-spread T. Tajima, J.M. Dawson,1979. PRL 43(4), p.267. S. P. D. Mangles, et al. Nature , 2004 , 431 (7008): 535 – 538. 70 MeV 3% C. G. R. Geddes, et al. Nature, 2004 , 431(7008): 538 – 541. 86 MeV 2% J. Faure, et al. Nature, 2004 , 431(7008): 541 – 544. 170 MeV 12% W. P. Leemans, et al . Nature Physics , 2006 , 2 (10): 696 – 699. 1 GeV 2.5% X. Wang, et al. Nature Communications , 2013 , 4 : 1988. 2 GeV quasi-mono W. P. Leemans, et al. PRL , 2014 , 113 : 245002. 4.2 GeV 6% A . J. Gonsalves , et al. PRL , 2019 , 112: 084801. 8 GeV quasi-mono June 24, 2019 Workshop (Fermilab, Chicago) page 4

  5. Related applications 𝐹 0 = 𝑛 𝑓 π‘‘πœ• π‘ž β‰ˆ 100 π»π‘Š π‘œ 0 [10 18 𝑑𝑛 βˆ’3 ] β‹… 𝑓 𝑛 Accelerating field Accelection gradient improved 3 orders Table top light source Facility: Synchrotron light source (Shanghai) June 24, 2019 Workshop (Fermilab, Chicago) page 5

  6. LWFA in solid density material Metallic crystals Carbon nanotube 𝐹 0 = 𝑛 𝑓 π‘‘πœ• π‘ž β‰ˆ 100 π»π‘Š π‘œ 0 [10 18 𝑑𝑛 βˆ’3 ] β‹… 𝑓 𝑛 10 19 ~10 23 cm βˆ’3 βˆ’β†’ 0.3~30 TeV/m Reference: Chen, P. and Noble, R.J., 1987. In Relativistic Channeling (pp. 517-522). Springer, Boston, MA. Chen, P. and Noble, R.J., 1987, May. In AIP Conference Proceedings (Vol. 156, No. 1, pp. 222-227). AIP. Tajima, T. and Cavenago, M., 1987. Physical review letters , 59 (13), p.1440. 2~3 orders larger than Newberger, B.S. and Tajima, T., 1989. Physical Review A, 40(12), p.6897. Tajima, T., Mahale, N.K., MacKay, W.W., Huson, F.R., Ohnuma, S., Covington, B.C., Payne, J. and Newberger, B.S., 1989. Part. Accel. , 32 (IFSR-403), How can the laser light propagate conventional LWFA ! pp.235-240. through the overcritical plasma ? Newberger, B. and Tajima, T., 1989, October. In AIP Conference Proceedings (Vol. 193, No. 1, pp. 290-294). AIP. Dodin, I.Y. and Fisch, N.J., 2008. Physics of Plasmas , 15 (10), p.103105. Shin, Y.M., Lumpkin, A.H. and Thurman-Keup, R.M., 2015. Nuclear Instruments and Methods in Physics Research Section B, 355, pp.94-100. Shin, Y.M., Still, D.A. and Shiltsev, V., 2013. Physics of Plasmas , 20 (12), p.123106. June 24, 2019 Workshop (Fermilab, Chicago) page 6

  7. The state-of-the-art X-ray FEL Switzerland U. S. A. Japan Germany Korea June 24, 2019 Workshop (Fermilab, Chicago) page 7

  8. The state-of-the-art X-ray FEL European LCLS LCLS-II, CuRF LCLS-II, SCRF SACLA SwissFEL PAL-XFEL Shine XFEL Location Germany USA USA USA Japan Switzerland South Korea China Start of 2016 2009 2019 2020 2011 2016 2016 2025 commissioning Accelerator Super- Normal- Normal- Super- Normal- Normal- Normal- Super- technology conducting conducting conducting conducting conducting conducting conducting conducting Number of light 27 000 120 120 1 000 000 60 100 60 1 000 000 flashes per second Minimum 0.05 nm 0.15 nm 0.05 nm 0.25 nm 0.08 nm 0.1 nm 0.06 nm 0.05 nm wavelength of the laser Maximum e- 17.5 GeV 14.3 GeV 15 GeV 5 GeV 8.5 GeV 5.8 GeV 10 GeV 8 GeV energy Possible to witness the solid Length of the 3.4 km 3 km 3 km 3 km 0.75 km 0.74 km 1.1 km facility material as underdense plasma Number of 3 1 3 1 2 undulators Number of 6 5 4 3 3 stations 33 33 33 32 33 33 33 33 Peak brilliance 5 x 10 2 x 10 2 x 10 1 x 10 1 x 10 1 x 10 1.3 x 10 1 x 10 June 24, 2019 Workshop (Fermilab, Chicago) page 8

  9. Research stimulated by acceleration in metallic crystals Accelerator-- e+e- colliders Higher the accelerating gradient lower financial costs on much shorter timescale Electric field ~𝐔𝐖/𝐝𝐧 Electron energy ~π‡πŸπ– Laboratory astrophysics Neutron star: 10 4 ~10 11 T (magnetars: 10 8 ~10 11 T ) E~100TV/m --> B ~10 6 T Schwinger limit 𝐹 𝑑 ~10 18 π‘Š/𝑛 Novel energetic 𝛿𝐹 ~0.1 for 𝛿~10 3 , 𝐹~10 14 V/m 𝐹 𝑑 photon source Radiation reaction; QED effect June 24, 2019 Workshop (Fermilab, Chicago) page 9

  10. Advantage of x-ray LWFA Laser plasma scaling law Length (e.g. laser spot size) Normalized laser amplitude Accelerated beam charge Plasma density Electron beam intensity Electron beam emittance Lower emittance More brilliant Electron beam brilliance June 24, 2019 Workshop (Fermilab, Chicago) page 10

  11. PIC simulation for x-ray LWFA Simulation parameters rescale Conventional LWFA x-ray LWFA Wavelength [nm] 800 4 2.75 Γ— 10 23 (250 nc of 1 micron) Plasma density [ cm βˆ’3 ] 6.88 Γ— 10 18 a0 1.4 1.4 10 3 Waist [nm] 50 52.74 Γ— 10 βˆ’3 Duration [fs] 10.55 Intensity [W/ cm 2 ] 4.2 Γ— 10 18 1.7 Γ— 10 23 Power[TW] 13.2 13.2 I [kA] 1.12 1.12 18.3 Γ— 10 βˆ’3 Q [pC] 3.67 19.4 Γ— 10 βˆ’3 Duration[fs] 3.87 Emittance y [nm] 361 1.81 More brilliant ! Emittance z [nm] 413 2.07 Brightness [A/ m βˆ’2 ] 1.5 Γ— 10 16 6 Γ— 10 20 June 24, 2019 Workshop (Fermilab, Chicago) page 11

  12. PIC simulation of x-ray LWFA Uniform material Nano tube target Self-consistent 2D PIC πœ‡ 0 = 1π‘œπ‘› Laser: 𝑏 0 = 4 𝐹 𝑧 ~10 16 π‘Š/𝑛 πœ‡ 0 = 1πœˆπ‘› 𝑏 0 = 4, 𝐹 𝑧 ~10 13 π‘Š/𝑛 Density: π‘œ 𝑓 ~10 βˆ’3 π‘œ 𝑑 π‘œ 𝑓 ~10 24 /cm 3 ~GeV electron beams micron distance Solid material ! 𝐹 𝑦 ~10 14 π‘Š/m Gradient ~ TeV/cm Emittance 18.7 nm two orders smaller ! Zhang, X., Tajima, T., Farinella, D., Shin, Y., Mourou, G., Wheeler, J., Taborek, P., Chen, P., Dollar, F. and Shen, B., 2016 Physical Review Accelerators and Beams , 19 (10), p.101004. June 24, 2019 Workshop (Fermilab, Chicago) page 12

  13. Improve the quality of electron beam in LWFA Improve the quality of electron beam Self-injection Colliding pulse injection injection acceleration Ionization injection Density down-ramp injection Discontinuous injection Chirp control Low energy spread Emittance control High energy & low energy spread June 24, 2019 Workshop (Fermilab, Chicago) page 13

  14. New injection method for X-ray LWFA Driven x-ray laser parameters Wavelength [nm] 2.5 (495.9eV) Duration [as] 100 1.5 Γ— 10 23 ( 0.4g/cm 3 ) Plasma density [ cm βˆ’3 ] Intensity [W/ cm 2 ] 5.61 Γ— 10 23 Power[TW] 88.08 a0 1.6 100 Pulse energy 9.38 mJ Waist [nm] Injected electron (in the second bucket) liquid methane jet Laser wakefield Driven x-ray laser June 24, 2019 Workshop (Fermilab, Chicago) page 14

  15. The ionization of methane molecules in X-ray laser ⚫ Different from the field ionization and tunnel ionization in optical lasers ⚫ Single-photon absorption is dominant in the X-ray regime ⚫ Ionization starts from the inner shells, because the photoionization cross section are considerably higher for inner shells than for the valence shells. calculate the photoionization cross sections and atomic decay rates, Hartree-Fock-Slater code XATOM molecular dynamics Monte Carlo XMDYN code ionization dynamics http://www.desy.de/~xraypac/ June 24, 2019 Workshop (Fermilab, Chicago) page 15

  16. The ionization process of methane molecules CH 4 XMDYN code calculates the ionization processes For carbon atoms irradiated by photons of 495.9 eV Photoabsorption cross section: 1s orbit: 0.154 Mb 2s orbit: 6.7 Γ— 10 βˆ’3 MB main pulse 2p orbit: 5.1 Γ— 10 βˆ’4 MB June 24, 2019 Workshop (Fermilab, Chicago) page 16

  17. Electron injection in sharp vacuum-plasma transition PIC simulation y [πœ‡] 𝑦 [πœ‡] y [πœ‡] 𝑦 [πœ‡] June 24, 2019 Workshop (Fermilab, Chicago) page 17

  18. Refluxing Electron Injection (REI) Electron trajectory Second bucket First bucket June 24, 2019 Workshop (Fermilab, Chicago) page 18

Recommend


More recommend