goals
play

Goals Higher resolution Refinement Strategies for Single Particle - PDF document

Goals Higher resolution Refinement Strategies for Single Particle Structure Determination 20 20 11 NSF, Frst et al. (2003) Sorting of structural heterogeneity N. Grigorieff Resolving Power The Prophecy InGaAs [101]


  1. Goals • Higher resolution Refinement Strategies for Single Particle Structure Determination 20 Å 20 Å 11 Å NSF, Fürst et al. (2003) • Sorting of structural heterogeneity N. Grigorieff Resolving Power The Prophecy InGaAs [101] King Richard hath decreed... (QRB, 1995) • Use 5 e - per Å 2 • Demand a signal-to-noise ratio of 9 or better • Aim for 3 Å resolution 1.3 Å � Thou shall need to image 13,000 molecules � For 6 Å, thou shall need only 7,000 images Protein Crystals Purple Membrane 8.3 Å 2.6 Å resolution Bacteriorhodopsin

  2. The Puzzle A Crazy Idea • Assume reliable resolution measure ������ ��� • Search entire parameter space for highest resolution • Given enough images, atomic resolution is reached 5 parameters • Example: to determine 3 angles, 1 deg step; two coordinates, 1 pixel step: 360 x 360 x 360 x 100 x 100 = 5 x 10 11 Additional parameters: 13000 particles: (5 x 10 11 ) 13000 structures to search CTF (3 parameters) Magnification • This is a big number! Beam Tilt (2 parameters) 200Å Refinement Strategy 1: Projection Matching Low-resolution structure Aligned Particles Reference Reference High-resolution structure (Expectation maximization) Strategy 2: Alignment in Strategy 3: MRA and Reciprocal Space Classification

  3. Strategy 4: Maximum Likelihood ( ) ( ) ∫ φ φ Θ φ � � � � � � � � ∑ � + = � � � � � � �������������� ( ) � ∫ φ Θ φ � � � � ������������ � � � � = N = 4000 � � � SNR = 1/200 Maximum likelihood ( )   φ − �   � ( ) ( ) � � � alignment φ Θ =    −  φ Θ ����������� � � � ��� � � σ � π σ    �  �������� � �   φ ���������������������� X i � �� �������� N ������������� f Θ ������� ���������� σ ����������������� � � �������������������� Sigworth (1998), J. Struct. Biol. 122, 328-339 Sigworth (1998), J. Struct. Biol. 122, 328-339 Defocus/Astigmatism and ML processing of 2D crystals Magnification ��� ������������� Crystallography Alignment of individual unit cells using ML approach CTFFIND3 CTFTILT Problem 1: Local Optima Problem 2: Missing Views > 60º Particle Reference

  4. Classification Using ML Problem 3: Heterogeneity ( ) ( ) ∫ φ φ Θ φ � � � � � � � � ∑ ∑∫ � � + = � � �������������� � � � � ( ) � ∑ ( ) Θ � φ Θ φ � � � � � � ������������ � = � � � � � � � � � ( )   φ −   � � ( ) � � ( ) � φ Θ =    −  φ Θ � � ����������� � � � ��� � � π σ σ �    �  � �������� �   • Misalignment of particles ( ) ( ) φ ∫ ����������� Θ = φ Θ � � � � � � • Lower resolution in disordered regions � � ���������� � • Loss of features φ ���������������������� X i � �� �������� N ������������� f Θ ������� ���������� σ ����������������� � � �������������������� Classification Using ML Problem 4: Processing Artifacts Low-resolution structure • Interpolation errors • Masking Aligned Particles Reference • Negative B-factor High-resolution • … structure SNR = 1/50 Difference N = 2000 map N = 1000, SNR = 1/20 Correlation alignment Problem 5: Noise Bias Seeing is NOT Always Believing ⊗ = 0 on average ⊗ > 0 align 100 Images 1000 Images Reference for 64x64 image: average correlation = 0.064

  5. Resolution Measurement . Images of Particles Alignment Averaging FSC 100 Å Resolution Swiss Cheese Gedanken Experiments 1 0.9 0.8 Fourier Shell Correlation 0.7 0.6 0.5 0.4 9.2 Å 0.3 0.2 0.1 0 ∞ 20 10 6.7 Resolution [Å] N = 30000 Dangerous: SNR = 1/50 Boosting of high-resolution terms (application of a negative B-factor) Weighted Correlation Noise Bias Estimated resolution True resolution Alignment against 1 1 perfect reference ���� 0.8 0.8 �� (1 cycle only) �������� 0.6 0.6 Projection Test FSC FSC Model Reconstructions data 0.4 0.4 ���� (2 cubes) 0.2 0.2 �� �������� 0 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 Noise Resolution [pixel -1 ] Resolution [pixel -1 ] ∑ ( ) ∆Φ � � � � � � � � � [ ] ∈ = � � � � � � 1 ���� � � � � � ∑ ( ) � � � ��������� Noise � 0.8 [ ] ∈ ���� ���� � � � � � � ���� ��� only �� �� ( ) ( ) ∑ �������� �������� 0.6 † � � � � ��� FSC � � [ ] ��� = ∈ � � � � � � 0.4 �� � � � � � ��� ∑ ( ) ∑ ( ) Test Signal � � ���� � � � � 0.2 �� � � ��� data only [ ] [ ] ∈ ∈ �������� � � � � � � � � � � � � 0 � ) ∑ ( ) ( ∑ ( ) ( ) ( ) 0 0.1 0.2 0.3 0.4 0.5 � ��� ��� ��� ��� ��� � ��� ��� ��� ��� ��� � ��� ��� ��� ��� ��� = ≈ † � �� � � � �� � � � � � � �� � � � Correlation with perfect reference �� � Resolution [pixel -1 ] ����������������� � � � � � � [ ] ∈ � � � � � � �

  6. Noise Reconstruction Coherence Constraint ) ∑ ( = � �� � � � �� � � � Linear Weighted Phase correlation correlation � � ���� ���� residual coefficient coefficient Reference ��� �� �� ��� �������� �������� ��� ��� ��� ��� ��� ��� ��� � � � ��� ��� ��� ��� ��� � ��� ��� ��� ��� ��� �� � ���������� ������ Acknowledgements • Ca Channel Matthias Wolf (Glossmann/Striessnig) • NSF/20S Johannes Fürst (Axel Brünger) • Noisy Face David DeRosier • Financial Support: HHMI, NIH, NSF

Recommend


More recommend