geometric aspects of lukasiewicz logic
play

Geometric aspects of Lukasiewicz logic A short excursion - PowerPoint PPT Presentation

s Pr Geometric aspects of Lukasiewicz logic A short excursion rr vincenzo.marra@unimi.it


  1. ✇ ✵✳ ✇ ✶ ✇ ✳ ✶ ✐❢ ✇ ✇ ✇ ✶ ♦t❤❡r✇✐s❡✳ ✇ ✇ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ♥♦✇ ❞❡☞♥❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝s ❢♦r ♦✉r ❧♦❣✐❝✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❤❛s ❛ ♠❛♥②✲✈❛❧✉❡❞ s❡♠❛♥t✐❝s✿ s♣❡❝✐☞❝❛❧❧②✱ ✇❡ t❛❦❡ [ ✵ , ✶ ] ⊆ R ❛s ❛ s❡t ♦❢ ❭tr✉t❤ ✈❛❧✉❡s✧✳ ❆♥ ❛ss✐❣♥♠❡♥t ♦❢ tr✉t❤ ✈❛❧✉❡s✱ ♦r ❛♥ ❡✈❛❧✉❛t✐♦♥✱ ♦r ❛ ♣♦ss✐❜❧❡ ✇♦r❧❞ ✐s ❛♥ ❛ss✐❣♥♠❡♥t ✇ : ❋♦r♠ → [ ✵ , ✶ ] s✉❜❥❡❝t t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ tr✉t❤✲❢✉♥❝t✐♦♥❛❧ ❝♦♥❞✐t✐♦♥s ❢♦r ❛♥② ❢♦r♠✉❧✚ α ❛♥❞ β ✳

  2. ✇ ✶ ✇ ✳ ✶ ✐❢ ✇ ✇ ✇ ✶ ♦t❤❡r✇✐s❡✳ ✇ ✇ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ♥♦✇ ❞❡☞♥❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝s ❢♦r ♦✉r ❧♦❣✐❝✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❤❛s ❛ ♠❛♥②✲✈❛❧✉❡❞ s❡♠❛♥t✐❝s✿ s♣❡❝✐☞❝❛❧❧②✱ ✇❡ t❛❦❡ [ ✵ , ✶ ] ⊆ R ❛s ❛ s❡t ♦❢ ❭tr✉t❤ ✈❛❧✉❡s✧✳ ❆♥ ❛ss✐❣♥♠❡♥t ♦❢ tr✉t❤ ✈❛❧✉❡s✱ ♦r ❛♥ ❡✈❛❧✉❛t✐♦♥✱ ♦r ❛ ♣♦ss✐❜❧❡ ✇♦r❧❞ ✐s ❛♥ ❛ss✐❣♥♠❡♥t ✇ : ❋♦r♠ → [ ✵ , ✶ ] s✉❜❥❡❝t t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ tr✉t❤✲❢✉♥❝t✐♦♥❛❧ ❝♦♥❞✐t✐♦♥s ❢♦r ❛♥② ❢♦r♠✉❧✚ α ❛♥❞ β ✳ ✇ ( ⊥ ) = ✵✳

  3. ✶ ✐❢ ✇ ✇ ✇ ✶ ♦t❤❡r✇✐s❡✳ ✇ ✇ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ♥♦✇ ❞❡☞♥❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝s ❢♦r ♦✉r ❧♦❣✐❝✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❤❛s ❛ ♠❛♥②✲✈❛❧✉❡❞ s❡♠❛♥t✐❝s✿ s♣❡❝✐☞❝❛❧❧②✱ ✇❡ t❛❦❡ [ ✵ , ✶ ] ⊆ R ❛s ❛ s❡t ♦❢ ❭tr✉t❤ ✈❛❧✉❡s✧✳ ❆♥ ❛ss✐❣♥♠❡♥t ♦❢ tr✉t❤ ✈❛❧✉❡s✱ ♦r ❛♥ ❡✈❛❧✉❛t✐♦♥✱ ♦r ❛ ♣♦ss✐❜❧❡ ✇♦r❧❞ ✐s ❛♥ ❛ss✐❣♥♠❡♥t ✇ : ❋♦r♠ → [ ✵ , ✶ ] s✉❜❥❡❝t t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ tr✉t❤✲❢✉♥❝t✐♦♥❛❧ ❝♦♥❞✐t✐♦♥s ❢♦r ❛♥② ❢♦r♠✉❧✚ α ❛♥❞ β ✳ ✇ ( ⊥ ) = ✵✳ ✇ ( ¬ α ) = ✶ − ✇ ( α ) ✳

  4. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ♥♦✇ ❞❡☞♥❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝s ❢♦r ♦✉r ❧♦❣✐❝✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❤❛s ❛ ♠❛♥②✲✈❛❧✉❡❞ s❡♠❛♥t✐❝s✿ s♣❡❝✐☞❝❛❧❧②✱ ✇❡ t❛❦❡ [ ✵ , ✶ ] ⊆ R ❛s ❛ s❡t ♦❢ ❭tr✉t❤ ✈❛❧✉❡s✧✳ ❆♥ ❛ss✐❣♥♠❡♥t ♦❢ tr✉t❤ ✈❛❧✉❡s✱ ♦r ❛♥ ❡✈❛❧✉❛t✐♦♥✱ ♦r ❛ ♣♦ss✐❜❧❡ ✇♦r❧❞ ✐s ❛♥ ❛ss✐❣♥♠❡♥t ✇ : ❋♦r♠ → [ ✵ , ✶ ] s✉❜❥❡❝t t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ tr✉t❤✲❢✉♥❝t✐♦♥❛❧ ❝♦♥❞✐t✐♦♥s ❢♦r ❛♥② ❢♦r♠✉❧✚ α ❛♥❞ β ✳ ✇ ( ⊥ ) = ✵✳ ✇ ( ¬ α ) = ✶ − ✇ ( α ) ✳ � ✶ ✐❢ ✇ ( α ) � ✇ ( β ) ✇ ( α → β ) = ✶ − ( ✇ ( α ) − ✇ ( β )) ♦t❤❡r✇✐s❡✳

  5. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚r✉t❤✲❢✉♥❝t✐♦♥ ♦❢ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥✳ � ✶ ✐❢ ✇ ( α ) � ✇ ( β ) ✇ ( α → β ) = ✶ − ( ✇ ( α ) − ✇ ( β )) ♦t❤❡r✇✐s❡✳

  6. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚r✉t❤✲❢✉♥❝t✐♦♥ ♦❢ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥✳ ✇ ( α → β ) = ♠✐♥ { ✶ , ✶ − ( ✇ ( α ) − ✇ ( β )) }

  7. ④ ❋❛❧s✉♠ ❱❡r✉♠ ④ ◆❡❣❛t✐♦♥ ④ ■♠♣❧✐❝❛t✐♦♥ ✭▲❛tt✐❝❡✮ ❉✐s❥✉♥❝t✐♦♥ ✭▲❛tt✐❝❡✮ ❈♦♥❥✉♥❝t✐♦♥ ❇✐❝♦♥❞✐t✐♦♥❛❧ ❙tr♦♥❣ ❞✐s❥✉♥❝t✐♦♥ ❙tr♦♥❣ ❝♦♥❥✉♥❝t✐♦♥ ❈♦✲✐♠♣❧✐❝❛t✐♦♥ ❈♦♥♥❡❝t✐✈❡s ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ❛r❡ ✉s✐♥❣ { ⊥ , ¬ , → } ♦♥❧② ❛s ♣r✐♠✐t✐✈❡ ❝♦♥♥❡❝t✐✈❡s✳ ❚❤❡ r❡♠❛✐♥✐♥❣ ♦♥❡s ✭ ⊤ ✱ ∨ ✱ ❛♥❞ ∧ ✮ ❛r❡ ❞❡☞♥❛❜❧❡ ❛s ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ ❆♥❞ ✐t ✐s ❝✉st♦♠❛r② t♦ ❞❡☞♥❡ ♠♦r❡✳

  8. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ❛r❡ ✉s✐♥❣ { ⊥ , ¬ , → } ♦♥❧② ❛s ♣r✐♠✐t✐✈❡ ❝♦♥♥❡❝t✐✈❡s✳ ❚❤❡ r❡♠❛✐♥✐♥❣ ♦♥❡s ✭ ⊤ ✱ ∨ ✱ ❛♥❞ ∧ ✮ ❛r❡ ❞❡☞♥❛❜❧❡ ❛s ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ ❆♥❞ ✐t ✐s ❝✉st♦♠❛r② t♦ ❞❡☞♥❡ ♠♦r❡✳ Notation Definition Name ⊥ ④ ❋❛❧s✉♠ ⊤ ¬ ⊥ ❱❡r✉♠ ¬ α ④ ◆❡❣❛t✐♦♥ α → β ④ ■♠♣❧✐❝❛t✐♦♥ α ∨ β ( α → β ) → β ✭▲❛tt✐❝❡✮ ❉✐s❥✉♥❝t✐♦♥ α ∧ β ¬ ( ¬ α ∨ ¬ β ) ✭▲❛tt✐❝❡✮ ❈♦♥❥✉♥❝t✐♦♥ α ↔ β ( α → β ) ∧ ( β → α ) ❇✐❝♦♥❞✐t✐♦♥❛❧ α ⊕ β ¬ α → β ❙tr♦♥❣ ❞✐s❥✉♥❝t✐♦♥ α ⊙ β ¬ ( α → ¬ β ) ❙tr♦♥❣ ❝♦♥❥✉♥❝t✐♦♥ α ⊖ β ¬ ( α → β ) ❈♦✲✐♠♣❧✐❝❛t✐♦♥ Table: ❈♦♥♥❡❝t✐✈❡s ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳

  9. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❢♦r♠❛❧ s❡♠❛♥t✐❝s ✐s ❛s ❢♦❧❧♦✇s✿ Notation Formal semantics ⊥ ✇ ( ⊥ ) = ✵ ⊤ ✇ ( ⊤ ) = ✶ ¬ α ✇ ( ¬ α ) = ✶ − ✇ ( α ) α → β ✇ ( α → β ) = ♠✐♥ { ✶ , ✶ − ( ✇ ( α ) − ✇ ( β )) } α ∨ β ✇ ( α ∨ β ) = ♠❛① { ✇ ( α ) , ✇ ( β ) } α ∧ β ✇ ( α ∧ β ) = ♠✐♥ { ✇ ( α ) , ✇ ( β ) } α ↔ β ✇ ( α ↔ β ) = ✶ − | ✇ ( α ) − ✇ ( β ) | α ⊕ β ✇ ( α ⊕ β ) = ♠✐♥ { ✶ , ✇ ( α ) + ✇ ( β ) } α ⊙ β ✇ ( α ⊙ β ) = ♠❛① { ✵ , ✇ ( α ) + ✇ ( β ) − ✶ } α ⊖ β ✇ ( α ⊖ β ) = ♠❛① { ✵ , ✇ ( α ) − ✇ ( β ) } Table: ❋♦r♠❛❧ s❡♠❛♥t✐❝s ♦❢ ❝♦♥♥❡❝t✐✈❡s ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳

  10. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚r✉t❤✲❢✉♥❝t✐♦♥ ♦❢ ✥ ▲✉❦❛s✐❡✇✐❝③ ❭str♦♥❣ ❝♦♥❥✉♥❝t✐♦♥✧ ⊙ ✳ ✭ ◆♦t❡✿ ◆♦♥✲✐❞❡♠♣♦t❡♥t ♦♣❡r❛t✐♦♥✳ ✮ ✇ ( α ⊙ β ) = ♠❛① { ✵ , ✇ ( α ) + ✇ ( β ) − ✶ }

  11. ✭ ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t ✮ ✭ ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r ✮ ✭Pr✐♥❝✐♣❧❡ ♦❢ ♥♦♥✲❝♦♥tr❛❞✐❝t✐♦♥✮ ✭▲❛✇ ♦❢ ❞♦✉❜❧❡ ♥❡❣❛t✐♦♥✮ ✭ ❈♦♥s❡q✉❡♥t✐❛ ♠✐r❛❜✐❧✐s ✮ ✭❈♦♥tr❛♣♦s✐t✐♦♥✮ ✭Pr❡✲❧✐♥❡❛r✐t②✮ ❉❡☞♥❡✿ ❚❛✉t ❋♦r♠ ✐s t❤❡ s❡t ♦❢ ❛❧❧ t❛✉t♦❧♦❣✐❡s✳ ❲r✐t❡✿ t♦ ♠❡❛♥ ❚❛✉t ✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆♥❛❧②t✐❝ tr✉t❤s✱ ♦r t❛✉t♦❧♦❣✐❡s ❛❢t❡r ▲✳ ❲✐tt❣❡♥st❡✐♥✱ ❛r❡ ♥♦✇ ❞❡☞♥❡❞ ❛s t❤♦s❡ ❢♦r♠✉❧✚ α ∈ ❋♦r♠ t❤❛t ❛r❡ tr✉❡ ✐♥ ❡✈❡r② ♣♦ss✐❜❧❡ ✇♦r❧❞✱ ✐✳❡✳ s✉❝❤ t❤❛t ✇ ( α ) = ✶ ❢♦r ❛♥② ❛ss✐❣♥♠❡♥t ✇ ✳

  12. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆♥❛❧②t✐❝ tr✉t❤s✱ ♦r t❛✉t♦❧♦❣✐❡s ❛❢t❡r ▲✳ ❲✐tt❣❡♥st❡✐♥✱ ❛r❡ ♥♦✇ ❞❡☞♥❡❞ ❛s t❤♦s❡ ❢♦r♠✉❧✚ α ∈ ❋♦r♠ t❤❛t ❛r❡ tr✉❡ ✐♥ ❡✈❡r② ♣♦ss✐❜❧❡ ✇♦r❧❞✱ ✐✳❡✳ s✉❝❤ t❤❛t ✇ ( α ) = ✶ ❢♦r ❛♥② ❛ss✐❣♥♠❡♥t ✇ ✳ ⊥ → α ✭ ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t ✮ α ∨ ¬ α ✭ ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r ✮ ¬ ( α ∧ ¬ α ) ✭Pr✐♥❝✐♣❧❡ ♦❢ ♥♦♥✲❝♦♥tr❛❞✐❝t✐♦♥✮ ¬¬ α → α ✭▲❛✇ ♦❢ ❞♦✉❜❧❡ ♥❡❣❛t✐♦♥✮ ✭ ❈♦♥s❡q✉❡♥t✐❛ ♠✐r❛❜✐❧✐s ✮ ( ¬ α → α ) → α ( α → β ) → ( ¬ β → ¬ α ) ✭❈♦♥tr❛♣♦s✐t✐♦♥✮ ( α → β ) ∨ ( β → α ) ✭Pr❡✲❧✐♥❡❛r✐t②✮ ❉❡☞♥❡✿ ❚❛✉t ⊆ ❋♦r♠ ✐s t❤❡ s❡t ♦❢ ❛❧❧ t❛✉t♦❧♦❣✐❡s✳ ❲r✐t❡✿ � α t♦ ♠❡❛♥ α ∈ ❚❛✉t ✳

  13. ❚❤❡ s②♥t❛❝t✐❝ ❝♦✉♥t❡r♣❛rt ♦❢ ❛ t❛✉t♦❧♦❣② ✐s ❛ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧❛✱ ❛❧s♦ ❝❛❧❧❡❞ t❤❡♦r❡♠ ♦❢ t❤❡ ❧♦❣✐❝✳ ❚♦ ❞❡☞♥❡ ♣r♦✈❛❜✐❧✐t②✱ ✇❡ s❡❧❡❝t ✭✇✐t❤ ❛ ❧♦t ♦❢ ❤✐♥❞s✐❣❤t✮ ❛ s❡t ♦❢ t❛✉t♦❧♦❣✐❡s✱ ❛♥❞ ❞❡❝❧❛r❡ t❤❛t t❤❡② ❛r❡ ❛①✐♦♠s✿ t❤❡② ❝♦✉♥t ❛s ♣r♦✈❛❜❧❡ ❢♦r♠✉❧✚ ❜② ❞❡☞♥✐t✐♦♥✳ ◆❡①t ✇❡ s❡❧❡❝t ❛ s❡t ♦❢ ❞❡❞✉❝t✐♦♥ r✉❧❡s t❤❛t t❡❧❧ ✉s t❤❛t ✐❢ ✇❡ ❛❧r❡❛❞② ❡st❛❜❧✐s❤❡❞ t❤❛t ❢♦r♠✉❧✚ ♥ ❛r❡ ♣r♦✈❛❜❧❡✱ ❛♥❞ ✶ t❤❡s❡ ❤❛✈❡ ❛ ❝❡rt❛✐♥ s❤❛♣❡✱ t❤❡♥ ❛ s♣❡❝✐☞❝ ❢♦r♠✉❧❛ ✐s ❛❧s♦ ❛ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧❛✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❛✉t♦❧♦❣✐❡s ❛r❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝ ♥♦t✐♦♥✳ ▲♦❣✐❝ ✐s ❝♦♥❝❡r♥❡❞ ✇✐t❤ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ s②♥t❛① ✭t❤❡ ❧❛♥❣✉❛❣❡✮ ❛♥❞ s❡♠❛♥t✐❝s ✭t❤❡ ✇♦r❧❞✮✳

  14. ◆❡①t ✇❡ s❡❧❡❝t ❛ s❡t ♦❢ ❞❡❞✉❝t✐♦♥ r✉❧❡s t❤❛t t❡❧❧ ✉s t❤❛t ✐❢ ✇❡ ❛❧r❡❛❞② ❡st❛❜❧✐s❤❡❞ t❤❛t ❢♦r♠✉❧✚ ♥ ❛r❡ ♣r♦✈❛❜❧❡✱ ❛♥❞ ✶ t❤❡s❡ ❤❛✈❡ ❛ ❝❡rt❛✐♥ s❤❛♣❡✱ t❤❡♥ ❛ s♣❡❝✐☞❝ ❢♦r♠✉❧❛ ✐s ❛❧s♦ ❛ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧❛✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❛✉t♦❧♦❣✐❡s ❛r❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝ ♥♦t✐♦♥✳ ▲♦❣✐❝ ✐s ❝♦♥❝❡r♥❡❞ ✇✐t❤ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ s②♥t❛① ✭t❤❡ ❧❛♥❣✉❛❣❡✮ ❛♥❞ s❡♠❛♥t✐❝s ✭t❤❡ ✇♦r❧❞✮✳ ❚❤❡ s②♥t❛❝t✐❝ ❝♦✉♥t❡r♣❛rt ♦❢ ❛ t❛✉t♦❧♦❣② ✐s ❛ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧❛✱ ❛❧s♦ ❝❛❧❧❡❞ t❤❡♦r❡♠ ♦❢ t❤❡ ❧♦❣✐❝✳ ❚♦ ❞❡☞♥❡ ♣r♦✈❛❜✐❧✐t②✱ ✇❡ s❡❧❡❝t ✭✇✐t❤ ❛ ❧♦t ♦❢ ❤✐♥❞s✐❣❤t✮ ❛ s❡t ♦❢ t❛✉t♦❧♦❣✐❡s✱ ❛♥❞ ❞❡❝❧❛r❡ t❤❛t t❤❡② ❛r❡ ❛①✐♦♠s✿ t❤❡② ❝♦✉♥t ❛s ♣r♦✈❛❜❧❡ ❢♦r♠✉❧✚ ❜② ❞❡☞♥✐t✐♦♥✳

  15. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❛✉t♦❧♦❣✐❡s ❛r❡ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝ ♥♦t✐♦♥✳ ▲♦❣✐❝ ✐s ❝♦♥❝❡r♥❡❞ ✇✐t❤ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ s②♥t❛① ✭t❤❡ ❧❛♥❣✉❛❣❡✮ ❛♥❞ s❡♠❛♥t✐❝s ✭t❤❡ ✇♦r❧❞✮✳ ❚❤❡ s②♥t❛❝t✐❝ ❝♦✉♥t❡r♣❛rt ♦❢ ❛ t❛✉t♦❧♦❣② ✐s ❛ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧❛✱ ❛❧s♦ ❝❛❧❧❡❞ t❤❡♦r❡♠ ♦❢ t❤❡ ❧♦❣✐❝✳ ❚♦ ❞❡☞♥❡ ♣r♦✈❛❜✐❧✐t②✱ ✇❡ s❡❧❡❝t ✭✇✐t❤ ❛ ❧♦t ♦❢ ❤✐♥❞s✐❣❤t✮ ❛ s❡t ♦❢ t❛✉t♦❧♦❣✐❡s✱ ❛♥❞ ❞❡❝❧❛r❡ t❤❛t t❤❡② ❛r❡ ❛①✐♦♠s✿ t❤❡② ❝♦✉♥t ❛s ♣r♦✈❛❜❧❡ ❢♦r♠✉❧✚ ❜② ❞❡☞♥✐t✐♦♥✳ ◆❡①t ✇❡ s❡❧❡❝t ❛ s❡t ♦❢ ❞❡❞✉❝t✐♦♥ r✉❧❡s t❤❛t t❡❧❧ ✉s t❤❛t ✐❢ ✇❡ ❛❧r❡❛❞② ❡st❛❜❧✐s❤❡❞ t❤❛t ❢♦r♠✉❧✚ α ✶ , . . . , α ♥ ❛r❡ ♣r♦✈❛❜❧❡✱ ❛♥❞ t❤❡s❡ ❤❛✈❡ ❛ ❝❡rt❛✐♥ s❤❛♣❡✱ t❤❡♥ ❛ s♣❡❝✐☞❝ ❢♦r♠✉❧❛ β ✐s ❛❧s♦ ❛ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧❛✳

  16. ◆♦✇ ✇❡ ❞❡❝❧❛r❡ t❤❛t ❛ ❢♦r♠✉❧❛ ❋♦r♠ ✐s ♣r♦✈❛❜❧❡ ✐❢ t❤❡r❡ ❡①✐sts ❛ ♣r♦♦❢ ♦❢ ✱ t❤❛t ✐s✱ ❛ ☞♥✐t❡ s❡q✉❡♥❝❡ ♦❢ ❢♦r♠✉❧✚ ❧ ❛ s✉❝❤ t❤❛t✿ ✶ ✳ ❧ ❊❛❝❤ ✐ ✱ ✐ ❧ ✐s ❡✐t❤❡r ❛♥ ❛①✐♦♠✱ ♦r ✐s ♦❜t❛✐♥❛❜❧❡ ❢r♦♠ ❥ ❛♥❞ ❦ ✱ ❥ ❦ ✐ ✱ ✈✐❛ ❛♥ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ♠♦❞✉s ♣♦♥❡♥s ✳ ❉❡☞♥❡✿ ❚❤♠ ❋♦r♠ ✐s t❤❡ s❡t ♦❢ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧✚✳ ❲r✐t❡✿ t♦ ♠❡❛♥ ❚❤♠ ✳ ❲❡ st✐❧❧ ♥❡❡❞ t♦ ❞❡☞♥❡ t❤❡ ❛①✐♦♠s✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▼♦st ✐♠♣♦rt❛♥t ❞❡❞✉❝t✐♦♥ r✉❧❡ ✭♦♥❧② ♦♥❡ ✇❡ ✉s❡✮✿ ♠♦❞✉s ♣♦♥❡♥s✳ α α → β ( ♠♣ ) β

  17. ❲❡ st✐❧❧ ♥❡❡❞ t♦ ❞❡☞♥❡ t❤❡ ❛①✐♦♠s✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▼♦st ✐♠♣♦rt❛♥t ❞❡❞✉❝t✐♦♥ r✉❧❡ ✭♦♥❧② ♦♥❡ ✇❡ ✉s❡✮✿ ♠♦❞✉s ♣♦♥❡♥s✳ α α → β ( ♠♣ ) β ◆♦✇ ✇❡ ❞❡❝❧❛r❡ t❤❛t ❛ ❢♦r♠✉❧❛ α ∈ ❋♦r♠ ✐s ♣r♦✈❛❜❧❡ ✐❢ t❤❡r❡ ❡①✐sts ❛ ♣r♦♦❢ ♦❢ α ✱ t❤❛t ✐s✱ ❛ ☞♥✐t❡ s❡q✉❡♥❝❡ ♦❢ ❢♦r♠✉❧✚ α ✶ , . . . , α ❧ ❛ s✉❝❤ t❤❛t✿ α ❧ = α ✳ ❊❛❝❤ α ✐ ✱ ✐ < ❧ ✐s ❡✐t❤❡r ❛♥ ❛①✐♦♠✱ ♦r ✐s ♦❜t❛✐♥❛❜❧❡ ❢r♦♠ α ❥ ❛♥❞ α ❦ ✱ ❥ , ❦ < ✐ ✱ ✈✐❛ ❛♥ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ♠♦❞✉s ♣♦♥❡♥s ✳ ❉❡☞♥❡✿ ❚❤♠ ⊆ ❋♦r♠ ✐s t❤❡ s❡t ♦❢ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧✚✳ ❲r✐t❡✿ ⊢ α t♦ ♠❡❛♥ α ∈ ❚❤♠ ✳

  18. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▼♦st ✐♠♣♦rt❛♥t ❞❡❞✉❝t✐♦♥ r✉❧❡ ✭♦♥❧② ♦♥❡ ✇❡ ✉s❡✮✿ ♠♦❞✉s ♣♦♥❡♥s✳ α α → β ( ♠♣ ) β ◆♦✇ ✇❡ ❞❡❝❧❛r❡ t❤❛t ❛ ❢♦r♠✉❧❛ α ∈ ❋♦r♠ ✐s ♣r♦✈❛❜❧❡ ✐❢ t❤❡r❡ ❡①✐sts ❛ ♣r♦♦❢ ♦❢ α ✱ t❤❛t ✐s✱ ❛ ☞♥✐t❡ s❡q✉❡♥❝❡ ♦❢ ❢♦r♠✉❧✚ α ✶ , . . . , α ❧ ❛ s✉❝❤ t❤❛t✿ α ❧ = α ✳ ❊❛❝❤ α ✐ ✱ ✐ < ❧ ✐s ❡✐t❤❡r ❛♥ ❛①✐♦♠✱ ♦r ✐s ♦❜t❛✐♥❛❜❧❡ ❢r♦♠ α ❥ ❛♥❞ α ❦ ✱ ❥ , ❦ < ✐ ✱ ✈✐❛ ❛♥ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ♠♦❞✉s ♣♦♥❡♥s ✳ ❉❡☞♥❡✿ ❚❤♠ ⊆ ❋♦r♠ ✐s t❤❡ s❡t ♦❢ ♣r♦✈❛❜❧❡ ❢♦r♠✉❧✚✳ ❲r✐t❡✿ ⊢ α t♦ ♠❡❛♥ α ∈ ❚❤♠ ✳ ❲❡ st✐❧❧ ♥❡❡❞ t♦ ❞❡☞♥❡ t❤❡ ❛①✐♦♠s✳

  19. ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ ❆ ❢♦rt✐♦r✐✳ ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ ❄ ❈♦♥tr❛♣♦s✐t✐♦♥✳ ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳

  20. ❆ ❢♦rt✐♦r✐✳ ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ ❄ ❈♦♥tr❛♣♦s✐t✐♦♥✳ ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳

  21. ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ ❄ ❈♦♥tr❛♣♦s✐t✐♦♥✳ ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳

  22. ❄ ❈♦♥tr❛♣♦s✐t✐♦♥✳ ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳

  23. ❈♦♥tr❛♣♦s✐t✐♦♥✳ ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) (( α → β ) → β ) → (( β → α ) → α ) ❄

  24. ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) (( α → β ) → β ) → (( β → α ) → α ) ❄ (A4) ( α → β ) → ( ¬ β → ¬ α ) ❈♦♥tr❛♣♦s✐t✐♦♥✳

  25. ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) (( α → β ) → β ) → (( β → α ) → α ) ❄ (A4) ( α → β ) → ( ¬ β → ¬ α ) ❈♦♥tr❛♣♦s✐t✐♦♥✳ (A5) ( ¬ α → α ) → α ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳

  26. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) (( α → β ) → β ) → (( β → α ) → α ) ❄ (A4) ( α → β ) → ( ¬ β → ¬ α ) ❈♦♥tr❛♣♦s✐t✐♦♥✳ (A5) ( ¬ α → α ) → α ❈♦♥s❡q✉❡♥t✐❛ ▼✐r❛❜✐❧✐s✳ ❯♣♦♥ ❞❡☞♥✐♥❣ α ∨ β ≡ ( α → β ) → β ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳

  27. ❯♣♦♥ ❞❡☞♥✐♥❣ ✭❆✵④❆✺✮ r❡❛❞ ❛s s❤♦✇♥ ♥❡①t✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) ( α ∨ β ) → ( β ∨ α ) ❉✐s❥✉♥❝t✐♦♥ ✐s ❝♦♠♠✉t❛t✐✈❡✳ (A4) ( α → β ) → ( ¬ β → ¬ α ) ❈♦♥tr❛♣♦s✐t✐♦♥✳ (A5) α ∨ ¬ α ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r✳ α ∨ β ≡ ( α → β ) → β

  28. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) ( α ∨ β ) → ( β ∨ α ) ❉✐s❥✉♥❝t✐♦♥ ✐s ❝♦♠♠✉t❛t✐✈❡✳ (A4) ( α → β ) → ( ¬ β → ¬ α ) ❈♦♥tr❛♣♦s✐t✐♦♥✳ (A5) α ∨ ¬ α ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r✳ α ∨ β ≡ ( α → β ) → β ❉❡❞✉❝t✐♦♥ r✉❧❡ ❢♦r ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ α α → β (R1) ▼♦❞✉s ♣♦♥❡♥s✳ β

  29. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆①✐♦♠ s②st❡♠ ❢♦r ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳ (A0) ⊥ → α ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t✳ (A1) α → ( β → α ) ❆ ❢♦rt✐♦r✐✳ (A2) ( α → β ) → (( β → γ ) → ( α → γ )) ■♠♣❧✐❝❛t✐♦♥ ✐s tr❛♥s✐t✐✈❡✳ (A3) ( α ∨ β ) → ( β ∨ α ) ❉✐s❥✉♥❝t✐♦♥ ✐s ❝♦♠♠✉t❛t✐✈❡✳ (A4) ( α → β ) → ( ¬ β → ¬ α ) ❈♦♥tr❛♣♦s✐t✐♦♥✳ (A5) α ∨ ¬ α ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r✳ α ∨ β ≡ ( α → β ) → β ❉❡❞✉❝t✐♦♥ r✉❧❡ ❢♦r ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳ α α → β (R1) ▼♦❞✉s ♣♦♥❡♥s✳ β

  30. ❙✉❝❤ ❭s✉❝❝✐♥t ❞❡s❝r✐♣t✐♦♥s✧ ❝❛♥ ❜❡ ♣♦❧②s❡♠♦✉s t♦ ❛ s✉r♣r✐s✐♥❣ ❡①t❡♥t ✐♥❞❡❡❞✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❝❛♥ ❜❡ s✉❝❝✐♥❝t❧② ❞❡s❝r✐❜❡❞ ❛s ❝❧❛ss✐❝❛❧ ❧♦❣✐❝ ✇✐t❤♦✉t t❤❡ ❆r✐st♦t❡❧✐❛♥ ❧❛✇ ♦❢ ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r ✱ ❜✉t ✇✐t❤ t❤❡ ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t ❧❛✇✳

  31. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❝❛♥ ❜❡ s✉❝❝✐♥❝t❧② ❞❡s❝r✐❜❡❞ ❛s ❝❧❛ss✐❝❛❧ ❧♦❣✐❝ ✇✐t❤♦✉t t❤❡ ❆r✐st♦t❡❧✐❛♥ ❧❛✇ ♦❢ ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r ✱ ❜✉t ✇✐t❤ t❤❡ ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t ❧❛✇✳ ❙✉❝❤ ❭s✉❝❝✐♥t ❞❡s❝r✐♣t✐♦♥s✧ ❝❛♥ ❜❡ ♣♦❧②s❡♠♦✉s t♦ ❛ s✉r♣r✐s✐♥❣ ❡①t❡♥t ✐♥❞❡❡❞✳

  32. ▼♦r❛❧✿ ❚❤❡ ✐♠♣♦rt ♦❢ r❡♠♦✈✐♥❣ ♦♥❡ ❛①✐♦♠ ❢r♦♠ ❛♥ ❛①✐♦♠ s②st❡♠ ❞❡♣❡♥❞s ♦♥ t❤❡ ❛①✐♦♠ s②st❡♠ ✐ts❡❧❢✳ ■♥ ♣❛rt✐❝✉❧❛r✱ ❍✐❧❜❡rt✲st②❧❡ s②st❡♠s ❛r❡ ♦❢ ❧✐tt❧❡ ✉s❡ t♦ ❛♥❛❧②s❡ t❤❡ str✉❝t✉r❛❧ ♣r♦♣❡rt✐❡s ♦❢ ❧♦❣✐❝s ✐♥ t❡r♠s ♦❢ ❛ s♣❡❝✐☞❝ ❛①✐♦♠❛t✐s❛t✐♦♥✳ ✭❋♦r t❤✐s✱ t❤❡ ●❡♥t③❡♥✲st②❧❡ s②st❡♠s ✉s❡❞ ✐♥ ♣r♦♦❢ t❤❡♦r② ❛r❡ ♠♦r❡ ✉s❡❢✉❧✳✮ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ■♥t✉✐t✐♦♥✐st✐❝ ❧♦❣✐❝ ❝❛♥ ❜❡ s✉❝❝✐♥❝t❧② ❞❡s❝r✐❜❡❞ ❛s ❝❧❛ss✐❝❛❧ ❧♦❣✐❝ ✇✐t❤♦✉t t❤❡ ❆r✐st♦t❡❧✐❛♥ ❧❛✇ ♦❢ ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r ✱ ❜✉t ✇✐t❤ t❤❡ ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t ❧❛✇✳ ✶ ❙✉❝❤ ❭s✉❝❝✐♥t ❞❡s❝r✐♣t✐♦♥s✧ ❝❛♥ ❜❡ ♣♦❧②s❡♠♦✉s t♦ ❛ s✉r♣r✐s✐♥❣ ❡①t❡♥t ✐♥❞❡❡❞✳ ✶ ❆❧♠♦st ✈❡r❜❛t✐♠ ❢r♦♠ ❏✳ ▼♦s❝❤♦✈❛❦✐s✱ ■♥t✉✐t✐♦♥✐st✐❝ ▲♦❣✐❝ ✱ ❚❤❡ ❙t❛♥❢♦r❞ ❊♥❝②❝❧♦♣❡❞✐❛ ♦❢ P❤✐❧♦s♦♣❤②✱ ✷✵✶✵✱ ❊❞✇❛r❞ ◆✳ ❩❛❧t❛ ✭❡❞✳✮✳

  33. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ■♥t✉✐t✐♦♥✐st✐❝ ❧♦❣✐❝ ❝❛♥ ❜❡ s✉❝❝✐♥❝t❧② ❞❡s❝r✐❜❡❞ ❛s ❝❧❛ss✐❝❛❧ ❧♦❣✐❝ ✇✐t❤♦✉t t❤❡ ❆r✐st♦t❡❧✐❛♥ ❧❛✇ ♦❢ ❚❡rt✐✉♠ ♥♦♥ ❞❛t✉r ✱ ❜✉t ✇✐t❤ t❤❡ ❊① ❢❛❧s♦ q✉♦❞❧✐❜❡t ❧❛✇✳ ✶ ❙✉❝❤ ❭s✉❝❝✐♥t ❞❡s❝r✐♣t✐♦♥s✧ ❝❛♥ ❜❡ ♣♦❧②s❡♠♦✉s t♦ ❛ s✉r♣r✐s✐♥❣ ❡①t❡♥t ✐♥❞❡❡❞✳ ▼♦r❛❧✿ ❚❤❡ ✐♠♣♦rt ♦❢ r❡♠♦✈✐♥❣ ♦♥❡ ❛①✐♦♠ ❢r♦♠ ❛♥ ❛①✐♦♠ ✿✿✿✿✿✿ s②st❡♠ ❞❡♣❡♥❞s ♦♥ t❤❡ ❛①✐♦♠ s②st❡♠ ✐ts❡❧❢✳ ■♥ ♣❛rt✐❝✉❧❛r✱ ❍✐❧❜❡rt✲st②❧❡ s②st❡♠s ❛r❡ ♦❢ ❧✐tt❧❡ ✉s❡ t♦ ❛♥❛❧②s❡ t❤❡ str✉❝t✉r❛❧ ♣r♦♣❡rt✐❡s ♦❢ ❧♦❣✐❝s ✐♥ t❡r♠s ♦❢ ❛ s♣❡❝✐☞❝ ❛①✐♦♠❛t✐s❛t✐♦♥✳ ✭❋♦r t❤✐s✱ t❤❡ ●❡♥t③❡♥✲st②❧❡ s②st❡♠s ✉s❡❞ ✐♥ ♣r♦♦❢ t❤❡♦r② ❛r❡ ♠♦r❡ ✉s❡❢✉❧✳✮ ✶ ❆❧♠♦st ✈❡r❜❛t✐♠ ❢r♦♠ ❏✳ ▼♦s❝❤♦✈❛❦✐s✱ ■♥t✉✐t✐♦♥✐st✐❝ ▲♦❣✐❝ ✱ ❚❤❡ ❙t❛♥❢♦r❞ ❊♥❝②❝❧♦♣❡❞✐❛ ♦❢ P❤✐❧♦s♦♣❤②✱ ✷✵✶✵✱ ❊❞✇❛r❞ ◆✳ ❩❛❧t❛ ✭❡❞✳✮✳

  34. ❚❛✉t ❚❤♠ ❆✳ ❘♦s❡ ❛♥❞ ❏✳ ❇❛r❦❧❡② ❘♦ss❡r✱ ❚r❛♥s✳ ♦❢ t❤❡ ❆▼❙ ✱ ✶✾✺✽✳ Pr♦♦❢ ✐s s②♥t❛❝t✐❝✳ ❆❧❣❡❜r❛✐❝ ♣r♦♦❢ ❣✐✈❡♥ s❤♦rt❧② t❤❡r❡❛❢t❡r ❜② ❈✳❈✳ ❈❤❛♥❣✱ ✇❤✐❝❤ ✐♥tr♦❞✉❝❡❞ ▼❱✲❛❧❣❡❜r❛s ❢♦r t❤✐s ♣✉r♣♦s❡✳ ❲❡ ✇✐❧❧ r❡t✉r♥ t♦ t❤❡♠ ✐❢ t✐♠❡ ❛❧❧♦✇s✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤✐s ❝♦♥❝❧✉❞❡s ♦✉r ❞❡☞♥✐t✐♦♥ ♦❢ ✥ ▲✉❦❛s✐❡✇✐❝③ ✭♣r♦♣♦s✐t✐♦♥❛❧✮ ❧♦❣✐❝✳ ❆ ☞rst ✐♠♣♦rt❛♥t r❡s✉❧t✳ ■♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✱ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❛✉t♦❧♦❣✐❡s ❛♥❞ t❤❡♦r❡♠s ✐s ❡♥t✐r❡❧② ❛♥❛❧♦❣♦✉s t♦ t❤❡ ♦♥❡ t❤❛t ❤♦❧❞s ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ ■t ✐s st❛t❡❞ ✐♥ t❤❡ ♥❡①t r❡s✉❧t✱ ❛ s✉❜st❛♥t✐❛❧ ♣✐❡❝❡ ♦❢ ♠❛t❤❡♠❛t✐❝s✿

  35. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤✐s ❝♦♥❝❧✉❞❡s ♦✉r ❞❡☞♥✐t✐♦♥ ♦❢ ✥ ▲✉❦❛s✐❡✇✐❝③ ✭♣r♦♣♦s✐t✐♦♥❛❧✮ ❧♦❣✐❝✳ ❆ ☞rst ✐♠♣♦rt❛♥t r❡s✉❧t✳ ■♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✱ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❛✉t♦❧♦❣✐❡s ❛♥❞ t❤❡♦r❡♠s ✐s ❡♥t✐r❡❧② ❛♥❛❧♦❣♦✉s t♦ t❤❡ ♦♥❡ t❤❛t ❤♦❧❞s ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✳ ■t ✐s st❛t❡❞ ✐♥ t❤❡ ♥❡①t r❡s✉❧t✱ ❛ s✉❜st❛♥t✐❛❧ ♣✐❡❝❡ ♦❢ ♠❛t❤❡♠❛t✐❝s✿ Soundness and Completeness Theorem for � L ❚❛✉t = ❚❤♠ . ❆✳ ❘♦s❡ ❛♥❞ ❏✳ ❇❛r❦❧❡② ❘♦ss❡r✱ ❚r❛♥s✳ ♦❢ t❤❡ ❆▼❙ ✱ ✶✾✺✽✳ Pr♦♦❢ ✐s s②♥t❛❝t✐❝✳ ❆❧❣❡❜r❛✐❝ ♣r♦♦❢ ❣✐✈❡♥ s❤♦rt❧② t❤❡r❡❛❢t❡r ❜② ❈✳❈✳ ❈❤❛♥❣✱ ✇❤✐❝❤ ✐♥tr♦❞✉❝❡❞ ▼❱✲❛❧❣❡❜r❛s ❢♦r t❤✐s ♣✉r♣♦s❡✳ ❲❡ ✇✐❧❧ r❡t✉r♥ t♦ t❤❡♠ ✐❢ t✐♠❡ ❛❧❧♦✇s✳

  36. ❋♦r ❛♥② ❋♦r♠ ✱ ❛♥❞ ❛♥② s❡t ❙ ❋♦r♠ ✱ ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ❙ ❙ ■♥ t❤❡ ❛❝t✉❛❧ ✉s❡ ♦❢ ❛♥② ❧♦❣✐❝✱ ✐t ✐s ♦❢ ❣r❡❛t ✐♠♣♦rt❛♥❝❡ t♦ ❤❛✈❡ ❝♦♠♣❧❡t❡♥❡ss ✉♥❞❡r ❛❞❞✐t✐♦♥❛❧ s❡ts ❙ ♦❢ ❛ss✉♠♣t✐♦♥s✳ ■t ✐s ❙ t❤❛t ❡♥❝♦❞❡s ♦✉r ❦♥♦✇❧❡❞❣❡ ❛❜♦✉t ❛ s♣❡❝✐☞❝ ❛♣♣❧✐❝❛t✐♦♥ ❞♦♠❛✐♥✳ P✉r❡ ❧♦❣✐❝ ✭ ❙ ✮ ❝❛♥ t❡❛❝❤ ✉s ♥♦t❤✐♥❣ ❛❜♦✉t t❤❡ ✇♦r❧❞✱ ❜② ❞❡☞♥✐t✐♦♥✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝ s❛t✐s☞❡s ❛ str♦♥❣❡r ❝♦♠♣❧❡t❡♥❡ss t❤❡♦r❡♠✳ ❋♦r ❙ , { α } ⊆ ❋♦r♠ ✱ ✇r✐t❡ ❙ ⊢ α ✐❢ α ✐s ♣r♦✈❛❜❧❡ ❢♦r♠ t❤❡ ❧♦❣✐❝❛❧ ❛①✐♦♠s ❛✉❣♠❡♥t❡❞ ❜② ❙ ✱ ❛♥❞ ❙ � α ✐❢ α ❤♦❧❞s ✐♥ ❡❛❝❤ ♠♦❞❡❧ ✭❂♣♦ss✐❜❧❡ ✇♦r❧❞✱ ❛ss✐❣♥♠❡♥t✮ ✇❤❡r❡✐♥ ❡❛❝❤ ❢♦r♠✉❧❛ ♦❢ ❙ ❤♦❧❞s✳

  37. ■♥ t❤❡ ❛❝t✉❛❧ ✉s❡ ♦❢ ❛♥② ❧♦❣✐❝✱ ✐t ✐s ♦❢ ❣r❡❛t ✐♠♣♦rt❛♥❝❡ t♦ ❤❛✈❡ ❝♦♠♣❧❡t❡♥❡ss ✉♥❞❡r ❛❞❞✐t✐♦♥❛❧ s❡ts ❙ ♦❢ ❛ss✉♠♣t✐♦♥s✳ ■t ✐s ❙ t❤❛t ❡♥❝♦❞❡s ♦✉r ❦♥♦✇❧❡❞❣❡ ❛❜♦✉t ❛ s♣❡❝✐☞❝ ❛♣♣❧✐❝❛t✐♦♥ ❞♦♠❛✐♥✳ P✉r❡ ❧♦❣✐❝ ✭ ❙ ✮ ❝❛♥ t❡❛❝❤ ✉s ♥♦t❤✐♥❣ ❛❜♦✉t t❤❡ ✇♦r❧❞✱ ❜② ❞❡☞♥✐t✐♦♥✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝ s❛t✐s☞❡s ❛ str♦♥❣❡r ❝♦♠♣❧❡t❡♥❡ss t❤❡♦r❡♠✳ ❋♦r ❙ , { α } ⊆ ❋♦r♠ ✱ ✇r✐t❡ ❙ ⊢ α ✐❢ α ✐s ♣r♦✈❛❜❧❡ ❢♦r♠ t❤❡ ❧♦❣✐❝❛❧ ❛①✐♦♠s ❛✉❣♠❡♥t❡❞ ❜② ❙ ✱ ❛♥❞ ❙ � α ✐❢ α ❤♦❧❞s ✐♥ ❡❛❝❤ ♠♦❞❡❧ ✭❂♣♦ss✐❜❧❡ ✇♦r❧❞✱ ❛ss✐❣♥♠❡♥t✮ ✇❤❡r❡✐♥ ❡❛❝❤ ❢♦r♠✉❧❛ ♦❢ ❙ ❤♦❧❞s✳ Strong Completeness Theorem for CL ❋♦r ❛♥② α ∈ ❋♦r♠ ✱ ❛♥❞ ❛♥② s❡t ❙ ⊆ ❋♦r♠ ✱ ❙ � α ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ❙ ⊢ α .

  38. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝ s❛t✐s☞❡s ❛ str♦♥❣❡r ❝♦♠♣❧❡t❡♥❡ss t❤❡♦r❡♠✳ ❋♦r ❙ , { α } ⊆ ❋♦r♠ ✱ ✇r✐t❡ ❙ ⊢ α ✐❢ α ✐s ♣r♦✈❛❜❧❡ ❢♦r♠ t❤❡ ❧♦❣✐❝❛❧ ❛①✐♦♠s ❛✉❣♠❡♥t❡❞ ❜② ❙ ✱ ❛♥❞ ❙ � α ✐❢ α ❤♦❧❞s ✐♥ ❡❛❝❤ ♠♦❞❡❧ ✭❂♣♦ss✐❜❧❡ ✇♦r❧❞✱ ❛ss✐❣♥♠❡♥t✮ ✇❤❡r❡✐♥ ❡❛❝❤ ❢♦r♠✉❧❛ ♦❢ ❙ ❤♦❧❞s✳ Strong Completeness Theorem for CL ❋♦r ❛♥② α ∈ ❋♦r♠ ✱ ❛♥❞ ❛♥② s❡t ❙ ⊆ ❋♦r♠ ✱ ❙ � α ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ❙ ⊢ α . ■♥ t❤❡ ❛❝t✉❛❧ ✉s❡ ♦❢ ❛♥② ❧♦❣✐❝✱ ✐t ✐s ♦❢ ❣r❡❛t ✐♠♣♦rt❛♥❝❡ t♦ ❤❛✈❡ ❝♦♠♣❧❡t❡♥❡ss ✉♥❞❡r ❛❞❞✐t✐♦♥❛❧ s❡ts ❙ ♦❢ ❛ss✉♠♣t✐♦♥s✳ ■t ✐s ❙ t❤❛t ❡♥❝♦❞❡s ♦✉r ❦♥♦✇❧❡❞❣❡ ❛❜♦✉t ❛ s♣❡❝✐☞❝ ❛♣♣❧✐❝❛t✐♦♥ ❞♦♠❛✐♥✳ P✉r❡ ❧♦❣✐❝ ✭ ❙ = ∅ ✮ ❝❛♥ t❡❛❝❤ ✉s ♥♦t❤✐♥❣ ❛❜♦✉t t❤❡ ✇♦r❧❞✱ ❜② ❞❡☞♥✐t✐♦♥✳

  39. ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❢❛✐❧s str♦♥❣ ❝♦♠♣❧❡t❡♥❡ss✳ ✥ ▲❡t ❙ ❜❡ t❤❡ s❡t ♦❢ ❢♦r♠✉❧✚ ✐♥ ♦♥❡ ✈❛r✐❛❜❧❡ ♣ ✿ ϕ ♥ ( ♣ ) := (( ♥ + ✶ )( ♣ ♥ ∧ ¬ ♣ )) ⊕ ♣ ♥ + ✶ , ❢♦r ❡❛❝❤ ✐♥t❡❣❡r ♥ � ✶✱ ✇❤❡r❡ ♣ ❦ := ♣ ⊙ · · · ⊙ ♣ , � �� � ❦ t✐♠❡s ❦♣ := ♣ ⊕ · · · ⊕ ♣ . � �� � ❦ t✐♠❡s ❚❤❡♥ ❙ �⊢ ✥ ▲ ♣ ✱ ❜✉t ❙ � ✥ ▲ ♣ ✳

  40. ❙②♥t❛❝t✐❝❛❧❧②✱ ✐t ❞♦❡s ♥♦t ❢♦❧❧♦✇ t❤❛t✿ ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ ✶✳✧✱ ✐✳❡✳ ❙ ▲ ♣ ✳ ❚❤✐s ✐s ❜❡❝❛✉s❡ ❛♥② ♣r♦♦❢ ♦❢ ♣ ✥ ❢r♦♠ ❙ ❝❛♥ ♦♥❧② ✉s❡s ❛ ☞♥✐t❡ s✉❜s❡t ♦❢ ❙ ✳ ❙❡♠❛♥t✐❝❛❧❧②✱ t❤❡ ♦♥❧② ♣♦ss✐❜❧❡ ✇♦r❧❞ ❝♦♠♣❛t✐❜❧❡ ✇✐t❤ ❛❧❧ ♦❢ ❙ ✐s t❤❡ ♦♥❡ s✉❝❤ t❤❛t ✇ ♣ ✶✱ ✐✳❡✳ ❙ ▲ ♣ ✳ ✥ ❚❛❦✐♥❣ st♦❝❦✳ ▲ ✐s ✱ ❜✉t ▲ ✐s ♥♦t✳ ✥ ✥ ◆♦t❡✳ ❙ ❛❧✇❛②s✳ ❙ ✥ ▲ ▲ ✥ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❙ �⊢ ✥ ▲ ♣ ✱ ❜✉t ❙ � ✥ ▲ ♣ ✳ ■♥t✉✐t✐✈❡❧②✱ ②♦✉ ❝❛♥ t❤✐♥❦ ♦❢ ❙ ❛s ❡♠❜♦❞②✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥☞♥✐t❡ s❡t ♦❢ ❛ss✉♠♣t✐♦♥s✿ 1 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✶ / ✷✳ 2 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✷ / ✸✳ 3 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✸ / ✹✳ 4 ✳ ✳ ✳

  41. ❙❡♠❛♥t✐❝❛❧❧②✱ t❤❡ ♦♥❧② ♣♦ss✐❜❧❡ ✇♦r❧❞ ❝♦♠♣❛t✐❜❧❡ ✇✐t❤ ❛❧❧ ♦❢ ❙ ✐s t❤❡ ♦♥❡ s✉❝❤ t❤❛t ✇ ♣ ✶✱ ✐✳❡✳ ❙ ▲ ♣ ✳ ✥ ❚❛❦✐♥❣ st♦❝❦✳ ▲ ✐s ✱ ❜✉t ▲ ✐s ♥♦t✳ ✥ ✥ ◆♦t❡✳ ❙ ❛❧✇❛②s✳ ❙ ▲ ✥ ▲ ✥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❙ �⊢ ✥ ▲ ♣ ✱ ❜✉t ❙ � ✥ ▲ ♣ ✳ ■♥t✉✐t✐✈❡❧②✱ ②♦✉ ❝❛♥ t❤✐♥❦ ♦❢ ❙ ❛s ❡♠❜♦❞②✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥☞♥✐t❡ s❡t ♦❢ ❛ss✉♠♣t✐♦♥s✿ 1 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✶ / ✷✳ 2 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✷ / ✸✳ 3 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✸ / ✹✳ 4 ✳ ✳ ✳ ❙②♥t❛❝t✐❝❛❧❧②✱ ✐t ❞♦❡s ♥♦t ❢♦❧❧♦✇ t❤❛t✿ ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ = ✶✳✧✱ ✐✳❡✳ ❙ �⊢ ✥ ▲ ♣ ✳ ❚❤✐s ✐s ❜❡❝❛✉s❡ ❛♥② ♣r♦♦❢ ♦❢ ♣ ❢r♦♠ ❙ ❝❛♥ ♦♥❧② ✉s❡s ❛ ☞♥✐t❡ s✉❜s❡t ♦❢ ❙ ✳

  42. ❚❛❦✐♥❣ st♦❝❦✳ ▲ ✐s ✱ ❜✉t ▲ ✐s ♥♦t✳ ✥ ✥ ◆♦t❡✳ ❙ ❛❧✇❛②s✳ ❙ ▲ ✥ ▲ ✥ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❙ �⊢ ✥ ▲ ♣ ✱ ❜✉t ❙ � ✥ ▲ ♣ ✳ ■♥t✉✐t✐✈❡❧②✱ ②♦✉ ❝❛♥ t❤✐♥❦ ♦❢ ❙ ❛s ❡♠❜♦❞②✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥☞♥✐t❡ s❡t ♦❢ ❛ss✉♠♣t✐♦♥s✿ 1 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✶ / ✷✳ 2 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✷ / ✸✳ 3 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✸ / ✹✳ 4 ✳ ✳ ✳ ❙②♥t❛❝t✐❝❛❧❧②✱ ✐t ❞♦❡s ♥♦t ❢♦❧❧♦✇ t❤❛t✿ ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ = ✶✳✧✱ ✐✳❡✳ ❙ �⊢ ✥ ▲ ♣ ✳ ❚❤✐s ✐s ❜❡❝❛✉s❡ ❛♥② ♣r♦♦❢ ♦❢ ♣ ❢r♦♠ ❙ ❝❛♥ ♦♥❧② ✉s❡s ❛ ☞♥✐t❡ s✉❜s❡t ♦❢ ❙ ✳ ❙❡♠❛♥t✐❝❛❧❧②✱ t❤❡ ♦♥❧② ♣♦ss✐❜❧❡ ✇♦r❧❞ ❝♦♠♣❛t✐❜❧❡ ✇✐t❤ ❛❧❧ ♦❢ ❙ ✐s t❤❡ ♦♥❡ s✉❝❤ t❤❛t ✇ ( ♣ ) = ✶✱ ✐✳❡✳ ❙ � ✥ ▲ ♣ ✳

  43. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❙ �⊢ ✥ ▲ ♣ ✱ ❜✉t ❙ � ✥ ▲ ♣ ✳ ■♥t✉✐t✐✈❡❧②✱ ②♦✉ ❝❛♥ t❤✐♥❦ ♦❢ ❙ ❛s ❡♠❜♦❞②✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥☞♥✐t❡ s❡t ♦❢ ❛ss✉♠♣t✐♦♥s✿ 1 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✶ / ✷✳ 2 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✷ / ✸✳ 3 ♣ := ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ � ✸ / ✹✳ 4 ✳ ✳ ✳ ❙②♥t❛❝t✐❝❛❧❧②✱ ✐t ❞♦❡s ♥♦t ❢♦❧❧♦✇ t❤❛t✿ ❭❊♥③♦ ✐s t❛❧❧✧ ✐s tr✉❡ t♦ ❞❡❣r❡❡ = ✶✳✧✱ ✐✳❡✳ ❙ �⊢ ✥ ▲ ♣ ✳ ❚❤✐s ✐s ❜❡❝❛✉s❡ ❛♥② ♣r♦♦❢ ♦❢ ♣ ❢r♦♠ ❙ ❝❛♥ ♦♥❧② ✉s❡s ❛ ☞♥✐t❡ s✉❜s❡t ♦❢ ❙ ✳ ❙❡♠❛♥t✐❝❛❧❧②✱ t❤❡ ♦♥❧② ♣♦ss✐❜❧❡ ✇♦r❧❞ ❝♦♠♣❛t✐❜❧❡ ✇✐t❤ ❛❧❧ ♦❢ ❙ ✐s t❤❡ ♦♥❡ s✉❝❤ t❤❛t ✇ ( ♣ ) = ✶✱ ✐✳❡✳ ❙ � ✥ ▲ ♣ ✳ ❚❛❦✐♥❣ st♦❝❦✳ ⊢ ✥ ▲ ✐s compact ✱ ❜✉t � ✥ ▲ ✐s ♥♦t✳ ◆♦t❡✳ ❙ ⊢ ✥ ▲ α ⇒ ❙ � ✥ ▲ α ❛❧✇❛②s✳

  44. ❆ ❢♦❧❦❧♦r❡ t❤❡♦r❡♠✿ ❋♦r ❛♥② ❋♦r♠ ✱ ❛♥❞ ❛♥② ♠❛①✐♠❛❧ ❝♦♥s✐st❡♥t s❡t ▼ ❋♦r♠ ✱ ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ▼ ▼ ▲ ✥ ▲ ✥ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❍❛②✲❲✓ ♦❥❝✐❝❦✐ ❚❤❡♦r❡♠✿ Completeness Theorem for f.a. theories in � L ❋♦r ❛♥② α ∈ ❋♦r♠ ✱ ❛♥❞ ❛♥② ☞♥✐t❡ s❡t ❋ ⊆ ❋♦r♠ ✱ ▲ α ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ❋ ⊢ ✥ ▲ α . ❋ � ✥

  45. ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❍❛②✲❲✓ ♦❥❝✐❝❦✐ ❚❤❡♦r❡♠✿ Completeness Theorem for f.a. theories in � L ❋♦r ❛♥② α ∈ ❋♦r♠ ✱ ❛♥❞ ❛♥② ☞♥✐t❡ s❡t ❋ ⊆ ❋♦r♠ ✱ ▲ α ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ❋ ⊢ ✥ ▲ α . ❋ � ✥ ❆ ❢♦❧❦❧♦r❡ t❤❡♦r❡♠✿ Completeness Theorem for maximal theories in � L ❋♦r ❛♥② α ∈ ❋♦r♠ ✱ ❛♥❞ ❛♥② ♠❛①✐♠❛❧ ❝♦♥s✐st❡♥t s❡t ▼ ⊆ ❋♦r♠ ✱ ▲ α ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ▼ ⊢ ✥ ▲ α . ▼ � ✥

  46. ◆♦t❛ ❇❡♥❡✳ ❚❤❡ t❡r♠✐♥♦❧♦❣② ❭❙tr♦♥❣❧② ✉♥s❛t✐s☞❛❜❧❡✴✐♥❝♦♥s✐st❡♥t✧ ✐s ♥♦t st❛♥❞❛r❞✳ ■ ♦♥❧② ✉s❡ ✐t ❢♦r ❡❛s❡ ♦❢ ❡①♣♦s✐t✐♦♥✳ ■ ❞♦ ♥♦t ❦♥♦✇ ♦❢ ❛ st❛♥❞❛r❞ t❡r♠✐♥♦❧♦❣② ❢♦r t❤❡s❡ ❝♦♥❝❡♣ts✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Satisfiability and consistency in � L Notion Definition Description α ✐s s❛t✐s☞❛❜❧❡ ∃ ✇ s✉❝❤ t❤❛t ✇ ( α ) = ✶ α ✐s ✶✲s❛t✐s☞❛❜✐❧❡ α ✐s ❝♦♥s✐st❡♥t ∃ β s✉❝❤ t❤❛t α �⊢ ✥ α ❞♦❡s ♥♦t ♣r♦✈❡ s♠t❤❣✳ ▲ β ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) < ✶ α ✐s ✉♥s❛t✐s☞❛❜❧❡ α ✐s ♥♦t ✶✲s❛t✐s☞❛❜❧❡ α ✐s ✐♥❝♦♥s✐st❡♥t ∀ β ✇❡ ❤❛✈❡ α ⊢ ✥ ▲ β α ♣r♦✈❡s ❡✈❡r②t❤✐♥❣ α ✐s str♦♥❣❧② ✉♥s❛t✳ ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) = ✵ α ✐s ❛❧✇❛②s ❢❛❧s❡ ∀ β ✇❡ ❤❛✈❡ ⊢ ✥ α ✐s str♦♥❣❧② ✐♥❝♦♥✳ ▲ α → β α ✐♠♣❧✐❡s ❡✈❡r②t❤✐♥❣

  47. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Satisfiability and consistency in � L Notion Definition Description α ✐s s❛t✐s☞❛❜❧❡ ∃ ✇ s✉❝❤ t❤❛t ✇ ( α ) = ✶ α ✐s ✶✲s❛t✐s☞❛❜✐❧❡ α ✐s ❝♦♥s✐st❡♥t ∃ β s✉❝❤ t❤❛t α �⊢ ✥ α ❞♦❡s ♥♦t ♣r♦✈❡ s♠t❤❣✳ ▲ β ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) < ✶ α ✐s ✉♥s❛t✐s☞❛❜❧❡ α ✐s ♥♦t ✶✲s❛t✐s☞❛❜❧❡ α ✐s ✐♥❝♦♥s✐st❡♥t ∀ β ✇❡ ❤❛✈❡ α ⊢ ✥ ▲ β α ♣r♦✈❡s ❡✈❡r②t❤✐♥❣ α ✐s str♦♥❣❧② ✉♥s❛t✳ ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) = ✵ α ✐s ❛❧✇❛②s ❢❛❧s❡ ∀ β ✇❡ ❤❛✈❡ ⊢ ✥ α ✐s str♦♥❣❧② ✐♥❝♦♥✳ ▲ α → β α ✐♠♣❧✐❡s ❡✈❡r②t❤✐♥❣ ◆♦t❛ ❇❡♥❡✳ ❚❤❡ t❡r♠✐♥♦❧♦❣② ❭❙tr♦♥❣❧② ✉♥s❛t✐s☞❛❜❧❡✴✐♥❝♦♥s✐st❡♥t✧ ✐s ♥♦t st❛♥❞❛r❞✳ ■ ♦♥❧② ✉s❡ ✐t ❢♦r ❡❛s❡ ♦❢ ❡①♣♦s✐t✐♦♥✳ ■ ❞♦ ♥♦t ❦♥♦✇ ♦❢ ❛ st❛♥❞❛r❞ t❡r♠✐♥♦❧♦❣② ❢♦r t❤❡s❡ ❝♦♥❝❡♣ts✳

  48. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Satisfiability and consistency in � L Notion Definition Description α ✐s s❛t✐s☞❛❜❧❡ ∃ ✇ s✉❝❤ t❤❛t ✇ ( α ) = ✶ α ✐s ✶✲s❛t✐s☞❛❜✐❧❡ α ✐s ❝♦♥s✐st❡♥t ∃ β s✉❝❤ t❤❛t α �⊢ ✥ α ❞♦❡s ♥♦t ♣r♦✈❡ s♠t❤❣✳ ▲ β ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) < ✶ α ✐s ✉♥s❛t✐s☞❛❜❧❡ α ✐s ♥♦t ✶✲s❛t✐s☞❛❜❧❡ α ✐s ✐♥❝♦♥s✐st❡♥t ∀ β ✇❡ ❤❛✈❡ α ⊢ ✥ ▲ β α ♣r♦✈❡s ❡✈❡r②t❤✐♥❣ α ✐s str♦♥❣❧② ✉♥s❛t✳ ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) = ✵ α ✐s ❛❧✇❛②s ❢❛❧s❡ ∀ β ✇❡ ❤❛✈❡ ⊢ ✥ α ✐s str♦♥❣❧② ✐♥❝♦♥✳ ▲ α → β α ✐♠♣❧✐❡s ❡✈❡r②t❤✐♥❣ ❊q✉✐✈❛❧❡♥t ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝ ❜② t❤❡ Pr✐♥❝✐♣❧❡ ♦❢ ❇✐✈❛❧❡♥❝❡✳

  49. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Satisfiability and consistency in � L Notion Definition Description α ✐s s❛t✐s☞❛❜❧❡ ∃ ✇ s✉❝❤ t❤❛t ✇ ( α ) = ✶ α ✐s ✶✲s❛t✐s☞❛❜✐❧❡ α ✐s ❝♦♥s✐st❡♥t ∃ β s✉❝❤ t❤❛t α �⊢ ✥ α ❞♦❡s ♥♦t ♣r♦✈❡ s♠t❤❣✳ ▲ β ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) < ✶ α ✐s ✉♥s❛t✐s☞❛❜❧❡ α ✐s ♥♦t ✶✲s❛t✐s☞❛❜❧❡ α ✐s ✐♥❝♦♥s✐st❡♥t ∀ β ✇❡ ❤❛✈❡ α ⊢ ✥ ▲ β α ♣r♦✈❡s ❡✈❡r②t❤✐♥❣ α ✐s str♦♥❣❧② ✉♥s❛t✳ ∀ ✇ ✇❡ ❤❛✈❡ ✇ ( α ) = ✵ α ✐s ❛❧✇❛②s ❢❛❧s❡ ∀ β ✇❡ ❤❛✈❡ ⊢ ✥ α ✐s str♦♥❣❧② ✐♥❝♦♥✳ ▲ α → β α ✐♠♣❧✐❡s ❡✈❡r②t❤✐♥❣ ❊q✉✐✈❛❧❡♥t ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝ ❜② t❤❡ ❉❡❞✉❝t✐♦♥ ❚❤❡♦r❡♠✳

  50. ❚❤❡ ❞✐r❡❝t✐♦♥ ❢❛✐❧s ✐♥ ✥ ▲✿ ✱ ❜✉t ✳ ▲ ✥ ▲ ✥ ❋♦r ❛♥② ❋♦r♠ ✱ ♥ ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ♥ ✶ s✉❝❤ t❤❛t ✥ ▲ ✥ ▲ ♥ ✭◆♦t❛t✐♦♥✿ ✮ ♥ t✐♠❡s ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Deduction Theorem for CL ❋♦r ❛♥② α, β ∈ ❋♦r♠ ✱ α ⊢ β ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ⊢ α → β .

  51. ❋♦r ❛♥② ❋♦r♠ ✱ ♥ ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ♥ ✶ s✉❝❤ t❤❛t ▲ ✥ ▲ ✥ ♥ ✭◆♦t❛t✐♦♥✿ ✮ ♥ t✐♠❡s ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Deduction Theorem for CL ❋♦r ❛♥② α, β ∈ ❋♦r♠ ✱ α ⊢ β ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ⊢ α → β . ❚❤❡ ❞✐r❡❝t✐♦♥ ⇒ ❢❛✐❧s ✐♥ ✥ ▲✿ α ⊢ ✥ ▲ α ⊙ α ✱ ❜✉t �⊢ ✥ ▲ α → α ⊙ α ✳

  52. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Deduction Theorem for CL ❋♦r ❛♥② α, β ∈ ❋♦r♠ ✱ α ⊢ β ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ⊢ α → β . ❚❤❡ ❞✐r❡❝t✐♦♥ ⇒ ❢❛✐❧s ✐♥ ✥ ▲✿ α ⊢ ✥ ▲ α ⊙ α ✱ ❜✉t �⊢ ✥ ▲ α → α ⊙ α ✳ Local Deduction Theorem for � L ❋♦r ❛♥② α, β ∈ ❋♦r♠ ✱ ▲ α ♥ → β . α ⊢ ✥ ▲ β ✐❢✱ ❛♥❞ ♦♥❧② ✐❢✱ ∃ ♥ � ✶ s✉❝❤ t❤❛t ⊢ ✥ ✭◆♦t❛t✐♦♥✿ α ♥ := α ⊙ · · · ⊙ α . ✮ � �� � ♥ t✐♠❡s

  53. ❲❡ ❝❛♥♥♦t t❤✐♥❦ ♦❢ ❛s ❭❢r♦♠ t❤❡ ❛ss✉♠♣t✐♦♥ ♦❢ ✱ t❤❡r❡ ❢♦❧❧♦✇s ✧✱ ✐✳❡✳ ❛s ✳ ❚❤❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥ ✐s ♥♦t ❛ ❝♦♥❞✐t✐♦♥❛❧✳ ❚❤❡ ✭❋r❡❣❡❛♥✮ ❞✐st✐♥❝t✐♦♥ ❜❡t✇❡❡♥ ❛ss❡rt✐♥❣ ❛ ♣r♦♣♦s✐t✐♦♥ ❛♥❞ ❝♦♥t❡♠♣❧❛t✐♥❣ t❤❛t ♣r♦♣♦s✐t✐♦♥ ❜❡❝♦♠❡s ❡ss❡♥t✐❛❧✿ ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✱ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠✰❜✐✈❛❧❡♥❝❡ ♠❛❦❡ t❤❛t ❞✐st✐♥❝t✐♦♥ ❢❛r ❧❡ss ✐♠♣♦rt❛♥t✳ ✭❈❢✳ t❤❡ ❚❛rs❦✐❛♥ ✐❞❡♥t✐☞❝❛t✐♦♥ ♦❢ t❤❡ ♠❡❛♥✐♥❣ ♦❢ ❛ ♣r♦♣♦s✐t✐♦♥ ✇✐t❤ ✐ts tr✉t❤ ❝♦♥❞✐t✐♦♥s✿ t❤✐s ❢❛✐❧s ❜❛❞❧② ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳✮ ❆s ❛ ❝♦♥s❡q✉❡♥❝❡ ♦❢ t❤❡ t✇♦ ♣r❡✈✐♦✉s ✐t❡♠s✱ ✇❤✐❧❡ ✐t ✐s ❡❛s② t♦ s❛② ✇❤❛t t❤❡ ❛ss❡rt✐♦♥ ♠❡❛♥s✱ ✐t ✐s ❢❛r ❤❛r❞❡r t♦ s❛② ✇❤❛t t❤❡ ♣❧❛✐♥ ♣r♦♣♦s✐t✐♦♥ ♠❡❛♥s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ✐♥t❡♥❞❡❞ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❝♦♥♥❡❝t✐✈❡ ✐s ✉♥❝❧❡❛r✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❢❛✐❧✉r❡ ♦❢ t❤❡ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠ ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ✐s ♦❢ ♣❛r❛♠♦✉♥t ❝♦♥❝❡♣t✉❛❧ ✐♠♣♦rt❛♥❝❡✿

  54. ❚❤❡ ✭❋r❡❣❡❛♥✮ ❞✐st✐♥❝t✐♦♥ ❜❡t✇❡❡♥ ❛ss❡rt✐♥❣ ❛ ♣r♦♣♦s✐t✐♦♥ ❛♥❞ ❝♦♥t❡♠♣❧❛t✐♥❣ t❤❛t ♣r♦♣♦s✐t✐♦♥ ❜❡❝♦♠❡s ❡ss❡♥t✐❛❧✿ ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✱ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠✰❜✐✈❛❧❡♥❝❡ ♠❛❦❡ t❤❛t ❞✐st✐♥❝t✐♦♥ ❢❛r ❧❡ss ✐♠♣♦rt❛♥t✳ ✭❈❢✳ t❤❡ ❚❛rs❦✐❛♥ ✐❞❡♥t✐☞❝❛t✐♦♥ ♦❢ t❤❡ ♠❡❛♥✐♥❣ ♦❢ ❛ ♣r♦♣♦s✐t✐♦♥ ✇✐t❤ ✐ts tr✉t❤ ❝♦♥❞✐t✐♦♥s✿ t❤✐s ❢❛✐❧s ❜❛❞❧② ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳✮ ❆s ❛ ❝♦♥s❡q✉❡♥❝❡ ♦❢ t❤❡ t✇♦ ♣r❡✈✐♦✉s ✐t❡♠s✱ ✇❤✐❧❡ ✐t ✐s ❡❛s② t♦ s❛② ✇❤❛t t❤❡ ❛ss❡rt✐♦♥ ♠❡❛♥s✱ ✐t ✐s ❢❛r ❤❛r❞❡r t♦ s❛② ✇❤❛t t❤❡ ♣❧❛✐♥ ♣r♦♣♦s✐t✐♦♥ ♠❡❛♥s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ✐♥t❡♥❞❡❞ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❝♦♥♥❡❝t✐✈❡ ✐s ✉♥❝❧❡❛r✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❢❛✐❧✉r❡ ♦❢ t❤❡ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠ ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ✐s ♦❢ ♣❛r❛♠♦✉♥t ❝♦♥❝❡♣t✉❛❧ ✐♠♣♦rt❛♥❝❡✿ 1 ❲❡ ❝❛♥♥♦t t❤✐♥❦ ♦❢ α → β ❛s ❭❢r♦♠ t❤❡ ❛ss✉♠♣t✐♦♥ ♦❢ α ✱ t❤❡r❡ ❢♦❧❧♦✇s β ✧✱ ✐✳❡✳ ❛s α ⊢ β ✳ ❚❤❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥ ✐s ♥♦t ❛ ❝♦♥❞✐t✐♦♥❛❧✳

  55. ❆s ❛ ❝♦♥s❡q✉❡♥❝❡ ♦❢ t❤❡ t✇♦ ♣r❡✈✐♦✉s ✐t❡♠s✱ ✇❤✐❧❡ ✐t ✐s ❡❛s② t♦ s❛② ✇❤❛t t❤❡ ❛ss❡rt✐♦♥ ♠❡❛♥s✱ ✐t ✐s ❢❛r ❤❛r❞❡r t♦ s❛② ✇❤❛t t❤❡ ♣❧❛✐♥ ♣r♦♣♦s✐t✐♦♥ ♠❡❛♥s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ✐♥t❡♥❞❡❞ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❝♦♥♥❡❝t✐✈❡ ✐s ✉♥❝❧❡❛r✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❢❛✐❧✉r❡ ♦❢ t❤❡ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠ ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ✐s ♦❢ ♣❛r❛♠♦✉♥t ❝♦♥❝❡♣t✉❛❧ ✐♠♣♦rt❛♥❝❡✿ 1 ❲❡ ❝❛♥♥♦t t❤✐♥❦ ♦❢ α → β ❛s ❭❢r♦♠ t❤❡ ❛ss✉♠♣t✐♦♥ ♦❢ α ✱ t❤❡r❡ ❢♦❧❧♦✇s β ✧✱ ✐✳❡✳ ❛s α ⊢ β ✳ ❚❤❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥ ✐s ♥♦t ❛ ❝♦♥❞✐t✐♦♥❛❧✳ 2 ❚❤❡ ✭❋r❡❣❡❛♥✮ ❞✐st✐♥❝t✐♦♥ ❜❡t✇❡❡♥ ❛ss❡rt✐♥❣ ❛ ♣r♦♣♦s✐t✐♦♥ ❛♥❞ ❝♦♥t❡♠♣❧❛t✐♥❣ t❤❛t ♣r♦♣♦s✐t✐♦♥ ❜❡❝♦♠❡s ❡ss❡♥t✐❛❧✿ ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✱ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠✰❜✐✈❛❧❡♥❝❡ ♠❛❦❡ t❤❛t ❞✐st✐♥❝t✐♦♥ ❢❛r ❧❡ss ✐♠♣♦rt❛♥t✳ ✭❈❢✳ t❤❡ ❚❛rs❦✐❛♥ ✐❞❡♥t✐☞❝❛t✐♦♥ ♦❢ t❤❡ ♠❡❛♥✐♥❣ ♦❢ ❛ ♣r♦♣♦s✐t✐♦♥ α ✇✐t❤ ✐ts tr✉t❤ ❝♦♥❞✐t✐♦♥s✿ t❤✐s ❢❛✐❧s ❜❛❞❧② ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳✮

  56. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ❢❛✐❧✉r❡ ♦❢ t❤❡ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠ ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ✐s ♦❢ ♣❛r❛♠♦✉♥t ❝♦♥❝❡♣t✉❛❧ ✐♠♣♦rt❛♥❝❡✿ 1 ❲❡ ❝❛♥♥♦t t❤✐♥❦ ♦❢ α → β ❛s ❭❢r♦♠ t❤❡ ❛ss✉♠♣t✐♦♥ ♦❢ α ✱ t❤❡r❡ ❢♦❧❧♦✇s β ✧✱ ✐✳❡✳ ❛s α ⊢ β ✳ ❚❤❡ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥ ✐s ♥♦t ❛ ❝♦♥❞✐t✐♦♥❛❧✳ 2 ❚❤❡ ✭❋r❡❣❡❛♥✮ ❞✐st✐♥❝t✐♦♥ ❜❡t✇❡❡♥ ❛ss❡rt✐♥❣ ❛ ♣r♦♣♦s✐t✐♦♥ ❛♥❞ ❝♦♥t❡♠♣❧❛t✐♥❣ t❤❛t ♣r♦♣♦s✐t✐♦♥ ❜❡❝♦♠❡s ❡ss❡♥t✐❛❧✿ ✐♥ ❝❧❛ss✐❝❛❧ ❧♦❣✐❝✱ ❞❡❞✉❝t✐♦♥ t❤❡♦r❡♠✰❜✐✈❛❧❡♥❝❡ ♠❛❦❡ t❤❛t ❞✐st✐♥❝t✐♦♥ ❢❛r ❧❡ss ✐♠♣♦rt❛♥t✳ ✭❈❢✳ t❤❡ ❚❛rs❦✐❛♥ ✐❞❡♥t✐☞❝❛t✐♦♥ ♦❢ t❤❡ ♠❡❛♥✐♥❣ ♦❢ ❛ ♣r♦♣♦s✐t✐♦♥ α ✇✐t❤ ✐ts tr✉t❤ ❝♦♥❞✐t✐♦♥s✿ t❤✐s ❢❛✐❧s ❜❛❞❧② ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳✮ 3 ❆s ❛ ❝♦♥s❡q✉❡♥❝❡ ♦❢ t❤❡ t✇♦ ♣r❡✈✐♦✉s ✐t❡♠s✱ ✇❤✐❧❡ ✐t ✐s ❡❛s② t♦ s❛② ✇❤❛t t❤❡ ❛ss❡rt✐♦♥ ⊢ α → β ♠❡❛♥s✱ ✐t ✐s ❢❛r ❤❛r❞❡r t♦ s❛② ✇❤❛t t❤❡ ♣❧❛✐♥ ♣r♦♣♦s✐t✐♦♥ α → β ♠❡❛♥s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ✐♥t❡♥❞❡❞ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❝♦♥♥❡❝t✐✈❡ → ✐s ✉♥❝❧❡❛r✳

  57. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Symbol Name Classically read ⊤ ✈❡r✉♠ ❆❧✇❛②s tr✉❡ ⊥ ❢❛❧s✉♠ ❆❧✇❛②s ❢❛❧s❡ ∨ ❞✐s❥✉♥❝t✐♦♥ ■♥❝❧✉s✐✈❡ ♦r ✭ ✈❡❧ ✮ ∧ ❝♦♥❥✉♥❝t✐♦♥ ❆♥❞ ✐♠♣❧✐❝❛t✐♦♥ ■❢✳ ✳ ✳ t❤❡♥✳ ✳ ✳ → ¬ ♥❡❣❛t✐♦♥ ◆♦t Notation Definition Formal Semantics ⊤ ¬ ⊥ ✇ ( ⊤ ) = ✶ α ∨ β ( α → β ) → β ✇ ( α ∨ β ) = ♠❛① { ✇ ( α ) , ✇ ( β ) } ✇ ( α ∧ β ) = ♠✐♥ { ✇ ( α ) , ✇ ( β ) } α ∧ β ¬ ( ¬ α ∨ ¬ β ) α ↔ β ( α → β ) ∧ ( β → α ) ✇ ( α ↔ β ) = ✶ − | ✇ ( α ) − ✇ ( β ) | α ⊕ β ¬ α → β ✇ ( α ⊕ β ) = ♠✐♥ { ✇ ( α ) + ✇ ( β ) , ✶ } α ⊖ β ✇ ( α ⊖ β ) = ♠❛① { ✇ ( α ) − ✇ ( β ) , ✵ } ¬ ( α → β ) Table: ❈♦♥♥❡❝t✐✈❡s ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝✳

  58. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚r✉t❤✲❢✉♥❝t✐♦♥ ♦❢ ✥ ▲✉❦❛s✐❡✇✐❝③ ✐♠♣❧✐❝❛t✐♦♥✳ ✇ ( α → β ) = ♠✐♥ { ✶ , ✶ − ( ✇ ( α ) − ✇ ( β )) } � ✶ ✐❢ ✇ ( α ) � ✇ ( β ) ✇ ( α → β ) = ✶ − ( ✇ ( α ) − ✇ ( β )) ♦t❤❡r✇✐s❡✳

  59. ❙❛② ❋♦r♠ ❛r❡ ❧♦❣✐❝❛❧❧② ❡q✉✐✈❛❧❡♥t ✐❢ ✳ ❲r✐t❡ ✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ MV-algebras ❈✳ ❈✳ ❈❤❛♥❣ ✐♥ ❘♦♠❡✱ ✶✾✻✾✳

  60. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ MV-algebras ❈✳ ❈✳ ❈❤❛♥❣ ✐♥ ❘♦♠❡✱ ✶✾✻✾✳ Lindenbaum’s Equivalence Relation ❙❛② α, β ∈ ❋♦r♠ ❛r❡ ❧♦❣✐❝❛❧❧② ❡q✉✐✈❛❧❡♥t ✐❢ ⊢ α ↔ β ✳ ❲r✐t❡ α ≡ β ✳

  61. ❋♦r♠ ❚❤❡ ❛❧❣❡❜r❛✐❝ str✉❝t✉r❡ ✵ ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛✳ ❵▼❱✲❛❧❣❡❜r❛✬ ✐s s❤♦rt ❢♦r ❵▼❛♥②✲❱❛❧✉❡❞ ❆❧❣❡❜r❛✬ ✱ ❭❢♦r ❧❛❝❦ ♦❢ ❛ ❜❡tt❡r ♥❛♠❡✳✧ ✭❈✳❈✳ ❈❤❛♥❣✱ ✶✾✽✻✮ ✳ ▼❱✲❛❧❣❡❜r❛s ✿ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❂ ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s ✿ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝ ❆❜str❛❝t❧②✿ ▼ ✵ ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛ ✐❢ ▼ ✵ ✐s ❛ ❝♦♠♠✉t❛t✐✈❡ ♠♦♥♦✐❞✱ ① ✱ ✶ ✵ ✐s ❛❜s♦r❜✐♥❣ ❢♦r ① ✭ ① ✶ ✶✮✱ ❛♥❞✱ ❝❤❛r❛❝t❡r✐st✐❝❛❧❧②✱ ✭✯✮ ① ② ② ② ① ① ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❖♥ t❤❡ q✉♦t✐❡♥t s❡t ❋♦r♠ ≡ ✱ t❤❡ ❝♦♥♥❡❝t✐✈❡s ✐♥❞✉❝❡ ♦♣❡r❛t✐♦♥s✿ ✵ := [ ⊥ ] ≡ ¬ [ α ] ≡ := [ ¬ α ] ≡ [ α ] ≡ ⊕ [ β ] ≡ := [ α ⊕ β ] ≡

  62. ❵▼❱✲❛❧❣❡❜r❛✬ ✐s s❤♦rt ❢♦r ❵▼❛♥②✲❱❛❧✉❡❞ ❆❧❣❡❜r❛✬ ✱ ❭❢♦r ❧❛❝❦ ♦❢ ❛ ❜❡tt❡r ♥❛♠❡✳✧ ✭❈✳❈✳ ❈❤❛♥❣✱ ✶✾✽✻✮ ✳ ▼❱✲❛❧❣❡❜r❛s ✿ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❂ ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s ✿ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝ ❆❜str❛❝t❧②✿ ▼ ✵ ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛ ✐❢ ▼ ✵ ✐s ❛ ❝♦♠♠✉t❛t✐✈❡ ♠♦♥♦✐❞✱ ① ✱ ✶ ✵ ✐s ❛❜s♦r❜✐♥❣ ❢♦r ① ✭ ① ✶ ✶✮✱ ❛♥❞✱ ❝❤❛r❛❝t❡r✐st✐❝❛❧❧②✱ ✭✯✮ ① ② ② ② ① ① ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❖♥ t❤❡ q✉♦t✐❡♥t s❡t ❋♦r♠ ≡ ✱ t❤❡ ❝♦♥♥❡❝t✐✈❡s ✐♥❞✉❝❡ ♦♣❡r❛t✐♦♥s✿ ✵ := [ ⊥ ] ≡ ¬ [ α ] ≡ := [ ¬ α ] ≡ [ α ] ≡ ⊕ [ β ] ≡ := [ α ⊕ β ] ≡ ❚❤❡ ❛❧❣❡❜r❛✐❝ str✉❝t✉r❡ ( ❋♦r♠ ≡ , ⊕ , ¬ , ✵ ) ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛✳

  63. ❆❜str❛❝t❧②✿ ▼ ✵ ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛ ✐❢ ▼ ✵ ✐s ❛ ❝♦♠♠✉t❛t✐✈❡ ♠♦♥♦✐❞✱ ① ✱ ✶ ✵ ✐s ❛❜s♦r❜✐♥❣ ❢♦r ① ✭ ① ✶ ✶✮✱ ❛♥❞✱ ❝❤❛r❛❝t❡r✐st✐❝❛❧❧②✱ ✭✯✮ ① ② ② ② ① ① ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❖♥ t❤❡ q✉♦t✐❡♥t s❡t ❋♦r♠ ≡ ✱ t❤❡ ❝♦♥♥❡❝t✐✈❡s ✐♥❞✉❝❡ ♦♣❡r❛t✐♦♥s✿ ✵ := [ ⊥ ] ≡ ¬ [ α ] ≡ := [ ¬ α ] ≡ [ α ] ≡ ⊕ [ β ] ≡ := [ α ⊕ β ] ≡ ❚❤❡ ❛❧❣❡❜r❛✐❝ str✉❝t✉r❡ ( ❋♦r♠ ≡ , ⊕ , ¬ , ✵ ) ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛✳ ❵▼❱✲❛❧❣❡❜r❛✬ ✐s s❤♦rt ❢♦r ❵▼❛♥②✲❱❛❧✉❡❞ ❆❧❣❡❜r❛✬ ✱ ❭❢♦r ❧❛❝❦ ♦❢ ❛ ❜❡tt❡r ♥❛♠❡✳✧ ✭❈✳❈✳ ❈❤❛♥❣✱ ✶✾✽✻✮ ✳ ▼❱✲❛❧❣❡❜r❛s ✿ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❂ ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s ✿ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝

  64. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❖♥ t❤❡ q✉♦t✐❡♥t s❡t ❋♦r♠ ≡ ✱ t❤❡ ❝♦♥♥❡❝t✐✈❡s ✐♥❞✉❝❡ ♦♣❡r❛t✐♦♥s✿ ✵ := [ ⊥ ] ≡ ¬ [ α ] ≡ := [ ¬ α ] ≡ [ α ] ≡ ⊕ [ β ] ≡ := [ α ⊕ β ] ≡ ❚❤❡ ❛❧❣❡❜r❛✐❝ str✉❝t✉r❡ ( ❋♦r♠ ≡ , ⊕ , ¬ , ✵ ) ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛✳ ❵▼❱✲❛❧❣❡❜r❛✬ ✐s s❤♦rt ❢♦r ❵▼❛♥②✲❱❛❧✉❡❞ ❆❧❣❡❜r❛✬ ✱ ❭❢♦r ❧❛❝❦ ♦❢ ❛ ❜❡tt❡r ♥❛♠❡✳✧ ✭❈✳❈✳ ❈❤❛♥❣✱ ✶✾✽✻✮ ✳ ▼❱✲❛❧❣❡❜r❛s ✿ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❂ ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s ✿ ❈❧❛ss✐❝❛❧ ❧♦❣✐❝ ❆❜str❛❝t❧②✿ ( ▼ , ⊕ , ¬ , ✵ ) ✐s ❛♥ ▼❱✲❛❧❣❡❜r❛ ✐❢ ( ▼ , ⊕ , ✵ ) ✐s ❛ ❝♦♠♠✉t❛t✐✈❡ ♠♦♥♦✐❞✱ ¬¬ ① = ① ✱ ✶ := ¬ ✵ ✐s ❛❜s♦r❜✐♥❣ ❢♦r ⊕ ✭ ① ⊕ ✶ = ✶✮✱ ❛♥❞✱ ❝❤❛r❛❝t❡r✐st✐❝❛❧❧②✱ ¬ ( ¬ ① ⊕ ② ) ⊕ ② = ¬ ( ¬ ② ⊕ ① ) ⊕ ① ✭✯✮

  65. ❚❤✉s✱ t❤❡ ❝❤❛r❛❝t❡r✐st✐❝ ❧❛✇ ✭✯✮ st❛t❡s t❤❛t ❥♦✐♥s ❝♦♠♠✉t❡✿ ① ② ② ① ▼❡❡ts ❛r❡ ❞❡☞♥❡❞ ❜② t❤❡ ❞❡ ▼♦r❣❛♥ ❝♦♥❞✐t✐♦♥ ① ② ① ② ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s❂■❞❡♠♣♦t❡♥t ▼❱✲❛❧❣❡❜r❛s✿ ① ① ① ✳ ❊q✉✐✈❛❧❡♥t❧②✿ ▼❱✲❛❧❣❡❜r❛s t❤❛t s❛t✐s❢② t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❧❛✇ ① ① ✶ ✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆♥② ▼❱✲❛❧❣❡❜r❛ ❤❛s ❛♥ ✉♥❞❡r❧②✐♥❣ ❞✐str✐❜✉t✐✈❡ ❧❛tt✐❝❡ ❜♦✉♥❞❡❞ ❜❡❧♦✇ ❜② ✵ ❛♥❞ ❛❜♦✈❡ ❜② ✶✳ ❏♦✐♥s ❛r❡ ❣✐✈❡♥ ❜② ① ∨ ② := ¬ ( ¬ ① ⊕ ② ) ⊕ ②

  66. ▼❡❡ts ❛r❡ ❞❡☞♥❡❞ ❜② t❤❡ ❞❡ ▼♦r❣❛♥ ❝♦♥❞✐t✐♦♥ ① ② ① ② ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s❂■❞❡♠♣♦t❡♥t ▼❱✲❛❧❣❡❜r❛s✿ ① ① ① ✳ ❊q✉✐✈❛❧❡♥t❧②✿ ▼❱✲❛❧❣❡❜r❛s t❤❛t s❛t✐s❢② t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❧❛✇ ① ① ✶ ✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆♥② ▼❱✲❛❧❣❡❜r❛ ❤❛s ❛♥ ✉♥❞❡r❧②✐♥❣ ❞✐str✐❜✉t✐✈❡ ❧❛tt✐❝❡ ❜♦✉♥❞❡❞ ❜❡❧♦✇ ❜② ✵ ❛♥❞ ❛❜♦✈❡ ❜② ✶✳ ❏♦✐♥s ❛r❡ ❣✐✈❡♥ ❜② ① ∨ ② := ¬ ( ¬ ① ⊕ ② ) ⊕ ② ❚❤✉s✱ t❤❡ ❝❤❛r❛❝t❡r✐st✐❝ ❧❛✇ ✭✯✮ st❛t❡s t❤❛t ❥♦✐♥s ❝♦♠♠✉t❡✿ ① ∨ ② = ② ∨ ①

  67. ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s❂■❞❡♠♣♦t❡♥t ▼❱✲❛❧❣❡❜r❛s✿ ① ① ① ✳ ❊q✉✐✈❛❧❡♥t❧②✿ ▼❱✲❛❧❣❡❜r❛s t❤❛t s❛t✐s❢② t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❧❛✇ ① ① ✶ ✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆♥② ▼❱✲❛❧❣❡❜r❛ ❤❛s ❛♥ ✉♥❞❡r❧②✐♥❣ ❞✐str✐❜✉t✐✈❡ ❧❛tt✐❝❡ ❜♦✉♥❞❡❞ ❜❡❧♦✇ ❜② ✵ ❛♥❞ ❛❜♦✈❡ ❜② ✶✳ ❏♦✐♥s ❛r❡ ❣✐✈❡♥ ❜② ① ∨ ② := ¬ ( ¬ ① ⊕ ② ) ⊕ ② ❚❤✉s✱ t❤❡ ❝❤❛r❛❝t❡r✐st✐❝ ❧❛✇ ✭✯✮ st❛t❡s t❤❛t ❥♦✐♥s ❝♦♠♠✉t❡✿ ① ∨ ② = ② ∨ ① ▼❡❡ts ❛r❡ ❞❡☞♥❡❞ ❜② t❤❡ ❞❡ ▼♦r❣❛♥ ❝♦♥❞✐t✐♦♥ ① ∧ ② := ¬ ( ¬ ① ∨ ¬ ② )

  68. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆♥② ▼❱✲❛❧❣❡❜r❛ ❤❛s ❛♥ ✉♥❞❡r❧②✐♥❣ ❞✐str✐❜✉t✐✈❡ ❧❛tt✐❝❡ ❜♦✉♥❞❡❞ ❜❡❧♦✇ ❜② ✵ ❛♥❞ ❛❜♦✈❡ ❜② ✶✳ ❏♦✐♥s ❛r❡ ❣✐✈❡♥ ❜② ① ∨ ② := ¬ ( ¬ ① ⊕ ② ) ⊕ ② ❚❤✉s✱ t❤❡ ❝❤❛r❛❝t❡r✐st✐❝ ❧❛✇ ✭✯✮ st❛t❡s t❤❛t ❥♦✐♥s ❝♦♠♠✉t❡✿ ① ∨ ② = ② ∨ ① ▼❡❡ts ❛r❡ ❞❡☞♥❡❞ ❜② t❤❡ ❞❡ ▼♦r❣❛♥ ❝♦♥❞✐t✐♦♥ ① ∧ ② := ¬ ( ¬ ① ∨ ¬ ② ) ❇♦♦❧❡❛♥ ❛❧❣❡❜r❛s❂■❞❡♠♣♦t❡♥t ▼❱✲❛❧❣❡❜r❛s✿ ① ⊕ ① = ① ✳ ❊q✉✐✈❛❧❡♥t❧②✿ ▼❱✲❛❧❣❡❜r❛s t❤❛t s❛t✐s❢② t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❧❛✇ ① ∨ ¬ ① = ✶ ✳

  69. ❚❤❡ ✈❛r✐❡t② ♦❢ ▼❱✲❛❧❣❡❜r❛s ✐s ❣❡♥❡r❛t❡❞ ❜② ✵ ✶ ✳ ❈✳❈✳ ❈❤❛♥❣✱ ❚r❛♥s✳ ♦❢ t❤❡ ❆▼❙ ✱ ✶✾✺✾✳ ❚❤✐s ♠❡❛♥s✿ ❚❤❡ ❝❧❛ss ♦❢ ▼❱✲❛❧❣❡❜r❛s ❝♦✐♥❝✐❞❡s ✇✐t❤ ❍❙P ✵ ✶ ⑤ ❛♥② ▼❱✲❛❧❣❡❜r❛ ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❛s ❛ ❤♦♠♦♠♦r♣❤✐❝ ✐♠❛❣❡ ♦❢ ❛ s✉❜❛❧❣❡❜r❛ ♦❢ ❛ ♣r♦❞✉❝t ♦❢ ❝♦♣✐❡s ♦❢ ✵ ✶ ✳ ❖r✿ ❚❤❡ ❡q✉❛t✐♦♥s ✭✐♥ t❤❡ ❧❛♥❣✉❛❣❡ ♦❢ ▼❱✲❛❧❣❡❜r❛s✮ t❤❛t ❤♦❧❞ ✐♥ ❛❧❧ ▼❱✲❛❧❣❡❜r❛s ❛r❡ ❡①❛❝t❧② t❤♦s❡ t❤❛t ❤♦❧❞ ✐♥ ✵ ✶ ✳ ❖r✿ ❆♥② ❋♦r♠ t❤❛t ❤❛s ❛ ❝♦✉♥t❡r✲♠♦❞❡❧ ✐♥ s♦♠❡ ▼❱✲❛❧❣❡❜r❛✱ ❛❧r❡❛❞② ❤❛s ❛ ❝♦✉♥t❡r✲♠♦❞❡❧ ✐♥ ✵ ✶ ✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ✐♥t❡r✈❛❧ [ ✵ , ✶ ] ⊆ R ❝❛♥ ❜❡ ♠❛❞❡ ✐♥t♦ ❛♥ ▼❱✲❛❧❣❡❜r❛ ✇✐t❤ ♥❡✉tr❛❧ ❡❧❡♠❡♥t ✵ ❜② ❞❡☞♥✐♥❣ ① ⊕ ② := ♠✐♥ { ① + ② , ✶ } , ¬ ① := ✶ − ① . ❚❤❡ ✉♥❞❡r❧②✐♥❣ ❧❛tt✐❝❡ ♦r❞❡r ♦❢ t❤✐s ▼❱✲❛❧❣❡❜r❛ ❝♦✐♥❝✐❞❡s ✇✐t❤ t❤❡ ♥❛t✉r❛❧ ♦r❞❡r ♦❢ [ ✵ , ✶ ] ✳

  70. ❚❤✐s ♠❡❛♥s✿ ❚❤❡ ❝❧❛ss ♦❢ ▼❱✲❛❧❣❡❜r❛s ❝♦✐♥❝✐❞❡s ✇✐t❤ ❍❙P ✵ ✶ ⑤ ❛♥② ▼❱✲❛❧❣❡❜r❛ ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❛s ❛ ❤♦♠♦♠♦r♣❤✐❝ ✐♠❛❣❡ ♦❢ ❛ s✉❜❛❧❣❡❜r❛ ♦❢ ❛ ♣r♦❞✉❝t ♦❢ ❝♦♣✐❡s ♦❢ ✵ ✶ ✳ ❖r✿ ❚❤❡ ❡q✉❛t✐♦♥s ✭✐♥ t❤❡ ❧❛♥❣✉❛❣❡ ♦❢ ▼❱✲❛❧❣❡❜r❛s✮ t❤❛t ❤♦❧❞ ✐♥ ❛❧❧ ▼❱✲❛❧❣❡❜r❛s ❛r❡ ❡①❛❝t❧② t❤♦s❡ t❤❛t ❤♦❧❞ ✐♥ ✵ ✶ ✳ ❖r✿ ❆♥② ❋♦r♠ t❤❛t ❤❛s ❛ ❝♦✉♥t❡r✲♠♦❞❡❧ ✐♥ s♦♠❡ ▼❱✲❛❧❣❡❜r❛✱ ❛❧r❡❛❞② ❤❛s ❛ ❝♦✉♥t❡r✲♠♦❞❡❧ ✐♥ ✵ ✶ ✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ✐♥t❡r✈❛❧ [ ✵ , ✶ ] ⊆ R ❝❛♥ ❜❡ ♠❛❞❡ ✐♥t♦ ❛♥ ▼❱✲❛❧❣❡❜r❛ ✇✐t❤ ♥❡✉tr❛❧ ❡❧❡♠❡♥t ✵ ❜② ❞❡☞♥✐♥❣ ① ⊕ ② := ♠✐♥ { ① + ② , ✶ } , ¬ ① := ✶ − ① . ❚❤❡ ✉♥❞❡r❧②✐♥❣ ❧❛tt✐❝❡ ♦r❞❡r ♦❢ t❤✐s ▼❱✲❛❧❣❡❜r❛ ❝♦✐♥❝✐❞❡s ✇✐t❤ t❤❡ ♥❛t✉r❛❧ ♦r❞❡r ♦❢ [ ✵ , ✶ ] ✳ Theorem (Chang’s completeness theorem, 1959) ❚❤❡ ✈❛r✐❡t② ♦❢ ▼❱✲❛❧❣❡❜r❛s ✐s ❣❡♥❡r❛t❡❞ ❜② [ ✵ , ✶ ] ✳ ❈✳❈✳ ❈❤❛♥❣✱ ❚r❛♥s✳ ♦❢ t❤❡ ❆▼❙ ✱ ✶✾✺✾✳

  71. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ ✐♥t❡r✈❛❧ [ ✵ , ✶ ] ⊆ R ❝❛♥ ❜❡ ♠❛❞❡ ✐♥t♦ ❛♥ ▼❱✲❛❧❣❡❜r❛ ✇✐t❤ ♥❡✉tr❛❧ ❡❧❡♠❡♥t ✵ ❜② ❞❡☞♥✐♥❣ ① ⊕ ② := ♠✐♥ { ① + ② , ✶ } , ¬ ① := ✶ − ① . ❚❤❡ ✉♥❞❡r❧②✐♥❣ ❧❛tt✐❝❡ ♦r❞❡r ♦❢ t❤✐s ▼❱✲❛❧❣❡❜r❛ ❝♦✐♥❝✐❞❡s ✇✐t❤ t❤❡ ♥❛t✉r❛❧ ♦r❞❡r ♦❢ [ ✵ , ✶ ] ✳ Theorem (Chang’s completeness theorem, 1959) ❚❤❡ ✈❛r✐❡t② ♦❢ ▼❱✲❛❧❣❡❜r❛s ✐s ❣❡♥❡r❛t❡❞ ❜② [ ✵ , ✶ ] ✳ ❈✳❈✳ ❈❤❛♥❣✱ ❚r❛♥s✳ ♦❢ t❤❡ ❆▼❙ ✱ ✶✾✺✾✳ ❚❤✐s ♠❡❛♥s✿ ❚❤❡ ❝❧❛ss ♦❢ ▼❱✲❛❧❣❡❜r❛s ❝♦✐♥❝✐❞❡s ✇✐t❤ ❍❙P ([ ✵ , ✶ ]) ⑤ ❛♥② ▼❱✲❛❧❣❡❜r❛ ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❛s ❛ ❤♦♠♦♠♦r♣❤✐❝ ✐♠❛❣❡ ♦❢ ❛ s✉❜❛❧❣❡❜r❛ ♦❢ ❛ ♣r♦❞✉❝t ♦❢ ❝♦♣✐❡s ♦❢ [ ✵ , ✶ ] ✳ ❖r✿ ❚❤❡ ❡q✉❛t✐♦♥s ✭✐♥ t❤❡ ❧❛♥❣✉❛❣❡ ♦❢ ▼❱✲❛❧❣❡❜r❛s✮ t❤❛t ❤♦❧❞ ✐♥ ❛❧❧ ▼❱✲❛❧❣❡❜r❛s ❛r❡ ❡①❛❝t❧② t❤♦s❡ t❤❛t ❤♦❧❞ ✐♥ [ ✵ , ✶ ] ✳ ❖r✿ ❆♥② α ∈ ❋♦r♠ t❤❛t ❤❛s ❛ ❝♦✉♥t❡r✲♠♦❞❡❧ ✐♥ s♦♠❡ ▼❱✲❛❧❣❡❜r❛✱ ❛❧r❡❛❞② ❤❛s ❛ ❝♦✉♥t❡r✲♠♦❞❡❧ ✐♥ [ ✵ , ✶ ] ✳

  72. ❍❡r❡ ✐s ❛ ✷✲✈❛r✐❛❜❧❡ ❣❡♥❡r❛❧✐s❛t✐♦♥ ♦❢ t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r t❡r♠✿ ① ① ② ② ✶ ✭ ✮ ✵ ✶ ✷ ✱ ❚❤❡ ❡✈❛❧✉❛t✐♦♥s ♦❢ ① ❛♥❞ ② ✐♥t♦ ✵ ✶ ✱ ✐✳❡✳ t❤❡ ♣❛✐rs r s t❤❛t s❛t✐s❢② ✱ ❛r❡ ♣r❡❝✐s❡❧② t❤❡ ♣♦✐♥ts ❧②✐♥❣ ♦♥ t❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✿ ❚❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t ✉s ❝♦♥s✐❞❡r t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❡q✉❛t✐♦♥✿ ① ∨ ¬ ① = ✶ . ✭ ⋆ ✮ ❚❤❡♥ ✭ ⋆ ✮ ✐s ♥♦t ❛♥ ✐❞❡♥t✐t② ♦✈❡r [ ✵ , ✶ ] ✿ t❤❡ ♦♥❧② ❡✈❛❧✉❛t✐♦♥s ✐♥t♦ [ ✵ , ✶ ] t❤❛t s❛t✐s❢② ✭ ⋆ ✮ ❛r❡ ① � → ✵ ❛♥❞ ① � → ✶ ⑤ t❤❡ ❇♦♦❧❡❛♥✱ ♦r ❝❧❛ss✐❝❛❧✱ ❡✈❛❧✉❛t✐♦♥s✳

  73. ✵ ✶ ✷ ✱ ❚❤❡ ❡✈❛❧✉❛t✐♦♥s ♦❢ ① ❛♥❞ ② ✐♥t♦ ✵ ✶ ✱ ✐✳❡✳ t❤❡ ♣❛✐rs r s t❤❛t s❛t✐s❢② ✱ ❛r❡ ♣r❡❝✐s❡❧② t❤❡ ♣♦✐♥ts ❧②✐♥❣ ♦♥ t❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✿ ❚❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t ✉s ❝♦♥s✐❞❡r t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❡q✉❛t✐♦♥✿ ① ∨ ¬ ① = ✶ . ✭ ⋆ ✮ ❚❤❡♥ ✭ ⋆ ✮ ✐s ♥♦t ❛♥ ✐❞❡♥t✐t② ♦✈❡r [ ✵ , ✶ ] ✿ t❤❡ ♦♥❧② ❡✈❛❧✉❛t✐♦♥s ✐♥t♦ [ ✵ , ✶ ] t❤❛t s❛t✐s❢② ✭ ⋆ ✮ ❛r❡ ① � → ✵ ❛♥❞ ① � → ✶ ⑤ t❤❡ ❇♦♦❧❡❛♥✱ ♦r ❝❧❛ss✐❝❛❧✱ ❡✈❛❧✉❛t✐♦♥s✳ ❍❡r❡ ✐s ❛ ✷✲✈❛r✐❛❜❧❡ ❣❡♥❡r❛❧✐s❛t✐♦♥ ♦❢ t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r t❡r♠✿ ① ∨ ¬ ① ∨ ② ∨ ¬ ② = ✶ ✭ ⋆⋆ ✮

  74. ❚❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✳ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t ✉s ❝♦♥s✐❞❡r t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❡q✉❛t✐♦♥✿ ① ∨ ¬ ① = ✶ . ✭ ⋆ ✮ ❚❤❡♥ ✭ ⋆ ✮ ✐s ♥♦t ❛♥ ✐❞❡♥t✐t② ♦✈❡r [ ✵ , ✶ ] ✿ t❤❡ ♦♥❧② ❡✈❛❧✉❛t✐♦♥s ✐♥t♦ [ ✵ , ✶ ] t❤❛t s❛t✐s❢② ✭ ⋆ ✮ ❛r❡ ① � → ✵ ❛♥❞ ① � → ✶ ⑤ t❤❡ ❇♦♦❧❡❛♥✱ ♦r ❝❧❛ss✐❝❛❧✱ ❡✈❛❧✉❛t✐♦♥s✳ ❍❡r❡ ✐s ❛ ✷✲✈❛r✐❛❜❧❡ ❣❡♥❡r❛❧✐s❛t✐♦♥ ♦❢ t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r t❡r♠✿ ① ∨ ¬ ① ∨ ② ∨ ¬ ② = ✶ ✭ ⋆⋆ ✮ ❚❤❡ ❡✈❛❧✉❛t✐♦♥s ♦❢ ① ❛♥❞ ② ✐♥t♦ [ ✵ , ✶ ] ✱ ✐✳❡✳ t❤❡ ♣❛✐rs ( r , s ) ∈ [ ✵ , ✶ ] ✷ ✱ t❤❛t s❛t✐s❢② ( ⋆⋆ ) ✱ ❛r❡ ♣r❡❝✐s❡❧② t❤❡ ♣♦✐♥ts ❧②✐♥❣ ♦♥ t❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✿

  75. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t ✉s ❝♦♥s✐❞❡r t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r ❡q✉❛t✐♦♥✿ ① ∨ ¬ ① = ✶ . ✭ ⋆ ✮ ❚❤❡♥ ✭ ⋆ ✮ ✐s ♥♦t ❛♥ ✐❞❡♥t✐t② ♦✈❡r [ ✵ , ✶ ] ✿ t❤❡ ♦♥❧② ❡✈❛❧✉❛t✐♦♥s ✐♥t♦ [ ✵ , ✶ ] t❤❛t s❛t✐s❢② ✭ ⋆ ✮ ❛r❡ ① � → ✵ ❛♥❞ ① � → ✶ ⑤ t❤❡ ❇♦♦❧❡❛♥✱ ♦r ❝❧❛ss✐❝❛❧✱ ❡✈❛❧✉❛t✐♦♥s✳ ❍❡r❡ ✐s ❛ ✷✲✈❛r✐❛❜❧❡ ❣❡♥❡r❛❧✐s❛t✐♦♥ ♦❢ t❤❡ t❡rt✐✉♠ ♥♦♥ ❞❛t✉r t❡r♠✿ ① ∨ ¬ ① ∨ ② ∨ ¬ ② = ✶ ✭ ⋆⋆ ✮ ❚❤❡ ❡✈❛❧✉❛t✐♦♥s ♦❢ ① ❛♥❞ ② ✐♥t♦ [ ✵ , ✶ ] ✱ ✐✳❡✳ t❤❡ ♣❛✐rs ( r , s ) ∈ [ ✵ , ✶ ] ✷ ✱ t❤❛t s❛t✐s❢② ( ⋆⋆ ) ✱ ❛r❡ ♣r❡❝✐s❡❧② t❤❡ ♣♦✐♥ts ❧②✐♥❣ ♦♥ t❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✿ ❚❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✳

  76. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❳ ∨ ¬ ❳ = ✶ ✭ ⋆ ✮ ❚❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t ✐♥t❡r✈❛❧✳ ❳ ∨ ¬ ❳ ∨ ❨ ∨ ¬ ❨ = ✶ ✭ ⋆⋆ ✮ ❚❤❡ ❜♦✉♥❞❛r② ♦❢ t❤❡ ✉♥✐t sq✉❛r❡✳

  77. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❚❤❡ t✇✐st❡❞ ❝✉❜✐❝ ✿ V ( { ② − ① ✷ , ③ − ① ✸ } ) → ( t , t ✷ , t ✸ ) ✳✮ ✭P❛r❛♠❡tr✐s❛t✐♦♥✿ t �−

  78. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ Rational polyhedra ▲❡♦♥❛r❞♦✬s ❚r✉♥❝❛t❡❞ ■❝♦s❛❤❡❞r♦♥ ✭ ■❧❧✉str❛t✐♦♥ ❢♦r ▲✉❝❛ P❛❝✐♦❧✐✬s ❚❤❡ ❉✐✈✐♥❡ Pr♦♣♦rt✐♦♥✱ ✶✺✵✾✳ ✮

  79. ♥ ✇✐t❤ P ❛ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ❝♦♥✈ ❋ ❀ ♥ ✇✐t❤ ❛ r❛t✐♦♥❛❧ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ❝♦♥✈ ❋ ✳ P ♥ ✱ ✇r✐tt❡♥ ❝♦♥✈ P ✱ ✐s t❤❡ ❚❤❡ ❝♦♥✈❡① ❤✉❧❧ ♦❢ ❛ s❡t P ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ ❝♦♥✈❡① ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❡❧❡♠❡♥ts ♦❢ P ✿ ♠ ♠ ❝♦♥✈ P P ❛♥❞ ✵ ✇✐t❤ ✶ r ✐ ✈ ✐ ✈ ✐ r ✐ r ✐ ✐ ✶ ✐ ✶ ❙✉❝❤ ❛ s❡t ✐s ❝♦♥✈❡① ✐❢ P ❝♦♥✈ P ✳ ❚❤❡ s❡t P ✐s ❝❛❧❧❡❞✿ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ❝♦♥s✐❞❡r ☞♥✐t❡❧② ♣r❡s❡♥t❡❞ ▼❱✲❛❧❣❡❜r❛s✱ ✐✳❡✳ t❤♦s❡ ♦❢ t❤❡ ❢♦r♠ F ♥ /θ ✱ ✇✐t❤ θ ❛ ☞♥✐t❡❧② ❣❡♥❡r❛t❡❞ ❝♦♥❣r✉❡♥❝❡ ✭✐❞❡❛❧✮✳ ❚❤❡ ❛ss✉♠♣t✐♦♥ ♦♥ θ ✐s ❢❛r ❢r♦♠ ✐♠♠❛t❡r✐❛❧✿ t❤❡r❡ ✐s ♥♦ ❍✐❧❜❡rt✬s ❇❛s✐s ❚❤❡♦r❡♠ ❢♦r ▼❱✲❛❧❣❡❜r❛s✳

  80. ♥ ✇✐t❤ P ❛ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ❝♦♥✈ ❋ ❀ ♥ ✇✐t❤ ❛ r❛t✐♦♥❛❧ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ❝♦♥✈ ❋ ✳ P ❚❤❡ s❡t P ✐s ❝❛❧❧❡❞✿ ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ❝♦♥s✐❞❡r ☞♥✐t❡❧② ♣r❡s❡♥t❡❞ ▼❱✲❛❧❣❡❜r❛s✱ ✐✳❡✳ t❤♦s❡ ♦❢ t❤❡ ❢♦r♠ F ♥ /θ ✱ ✇✐t❤ θ ❛ ☞♥✐t❡❧② ❣❡♥❡r❛t❡❞ ❝♦♥❣r✉❡♥❝❡ ✭✐❞❡❛❧✮✳ ❚❤❡ ❛ss✉♠♣t✐♦♥ ♦♥ θ ✐s ❢❛r ❢r♦♠ ✐♠♠❛t❡r✐❛❧✿ t❤❡r❡ ✐s ♥♦ ❍✐❧❜❡rt✬s ❇❛s✐s ❚❤❡♦r❡♠ ❢♦r ▼❱✲❛❧❣❡❜r❛s✳ ❚❤❡ ❝♦♥✈❡① ❤✉❧❧ ♦❢ ❛ s❡t P ⊆ R ♥ ✱ ✇r✐tt❡♥ ❝♦♥✈ P ✱ ✐s t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ ❝♦♥✈❡① ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❡❧❡♠❡♥ts ♦❢ P ✿ � ♠ � ♠ � � ❝♦♥✈ P = r ✐ ✈ ✐ | ✈ ✐ ∈ P ❛♥❞ ✵ � r ✐ ∈ R ✇✐t❤ r ✐ = ✶ . ✐ = ✶ ✐ = ✶ ❙✉❝❤ ❛ s❡t ✐s ❝♦♥✈❡① ✐❢ P = ❝♦♥✈ P ✳

  81. ♥ ✇✐t❤ ❛ r❛t✐♦♥❛❧ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ❝♦♥✈ ❋ ✳ P ▲✉❦❛s✐❡✇✐❝③ ✥ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ❝♦♥s✐❞❡r ☞♥✐t❡❧② ♣r❡s❡♥t❡❞ ▼❱✲❛❧❣❡❜r❛s✱ ✐✳❡✳ t❤♦s❡ ♦❢ t❤❡ ❢♦r♠ F ♥ /θ ✱ ✇✐t❤ θ ❛ ☞♥✐t❡❧② ❣❡♥❡r❛t❡❞ ❝♦♥❣r✉❡♥❝❡ ✭✐❞❡❛❧✮✳ ❚❤❡ ❛ss✉♠♣t✐♦♥ ♦♥ θ ✐s ❢❛r ❢r♦♠ ✐♠♠❛t❡r✐❛❧✿ t❤❡r❡ ✐s ♥♦ ❍✐❧❜❡rt✬s ❇❛s✐s ❚❤❡♦r❡♠ ❢♦r ▼❱✲❛❧❣❡❜r❛s✳ ❚❤❡ ❝♦♥✈❡① ❤✉❧❧ ♦❢ ❛ s❡t P ⊆ R ♥ ✱ ✇r✐tt❡♥ ❝♦♥✈ P ✱ ✐s t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ ❝♦♥✈❡① ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❡❧❡♠❡♥ts ♦❢ P ✿ � ♠ � ♠ � � ❝♦♥✈ P = r ✐ ✈ ✐ | ✈ ✐ ∈ P ❛♥❞ ✵ � r ✐ ∈ R ✇✐t❤ r ✐ = ✶ . ✐ = ✶ ✐ = ✶ ❙✉❝❤ ❛ s❡t ✐s ❝♦♥✈❡① ✐❢ P = ❝♦♥✈ P ✳ ❚❤❡ s❡t P ✐s ❝❛❧❧❡❞✿ ❛ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ⊆ R ♥ ✇✐t❤ P = ❝♦♥✈ ❋ ❀

  82. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❲❡ ❝♦♥s✐❞❡r ☞♥✐t❡❧② ♣r❡s❡♥t❡❞ ▼❱✲❛❧❣❡❜r❛s✱ ✐✳❡✳ t❤♦s❡ ♦❢ t❤❡ ❢♦r♠ F ♥ /θ ✱ ✇✐t❤ θ ❛ ☞♥✐t❡❧② ❣❡♥❡r❛t❡❞ ❝♦♥❣r✉❡♥❝❡ ✭✐❞❡❛❧✮✳ ❚❤❡ ❛ss✉♠♣t✐♦♥ ♦♥ θ ✐s ❢❛r ❢r♦♠ ✐♠♠❛t❡r✐❛❧✿ t❤❡r❡ ✐s ♥♦ ❍✐❧❜❡rt✬s ❇❛s✐s ❚❤❡♦r❡♠ ❢♦r ▼❱✲❛❧❣❡❜r❛s✳ ❚❤❡ ❝♦♥✈❡① ❤✉❧❧ ♦❢ ❛ s❡t P ⊆ R ♥ ✱ ✇r✐tt❡♥ ❝♦♥✈ P ✱ ✐s t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ ❝♦♥✈❡① ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❡❧❡♠❡♥ts ♦❢ P ✿ � ♠ � ♠ � � ❝♦♥✈ P = r ✐ ✈ ✐ | ✈ ✐ ∈ P ❛♥❞ ✵ � r ✐ ∈ R ✇✐t❤ r ✐ = ✶ . ✐ = ✶ ✐ = ✶ ❙✉❝❤ ❛ s❡t ✐s ❝♦♥✈❡① ✐❢ P = ❝♦♥✈ P ✳ ❚❤❡ s❡t P ✐s ❝❛❧❧❡❞✿ ❛ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ⊆ R ♥ ✇✐t❤ P = ❝♦♥✈ ❋ ❀ ❛ r❛t✐♦♥❛❧ ♣♦❧②t♦♣❡✱ ✐❢ t❤❡r❡ ✐s ❛ ☞♥✐t❡ ❋ ⊆ Q ♥ ✇✐t❤ P = ❝♦♥✈ ❋ ✳

  83. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆ ♣♦❧②t♦♣❡ ✐♥ R ✷ ✳

  84. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆ ♣♦❧②t♦♣❡ ✐♥ R ✷ ✭ ❛ s✐♠♣❧❡①✮ ✳

  85. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❆ ✭❝♦♠♣❛❝t✮ ♣♦❧②❤❡❞r♦♥ ✐♥ R ♥ ✐s ❛ ✉♥✐♦♥ ♦❢ ☞♥✐t❡❧② ♠❛♥② ♣♦❧②t♦♣❡s ✐♥ R ♥ ✳ ❆ ♣♦❧②❤❡❞r♦♥ ✐♥ R ✷ ✳ ❙✐♠✐❧❛r❧②✱ ❛ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r♦♥ ✐s ❛ ✉♥✐♦♥ ♦❢ ☞♥✐t❡❧② ♠❛♥② r❛t✐♦♥❛❧ ♣♦❧②t♦♣❡s✳

  86. ❊❛❝❤ ▲ ✐ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧ ✇✐t❤ ✐♥t❡❣❡r ❝♦❡✍❝✐❡♥ts✳ ♠ ❜❡t✇❡❡♥ ♣♦❧②❤❡❞r❛ ❛❧✇❛②s ✐s ♦❢ t❤❡ ♥ ❆ ♠❛♣ ❋ P ◗ ❢♦r♠ ❋ ❢ ✶ ❢ ♠ ✱ ❢ ✐ P ✳ ❚❤❡♥ ❋ ✐s ❛ ✲♠❛♣ ✐❢ ❡❛❝❤ ♦♥❡ ♦❢ ✐ts s❝❛❧❛r ❝♦♠♣♦♥❡♥ts ❢ ✐ ✐s✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t P ⊆ R ♥ ❜❡ ❛ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r♦♥✳ ❆ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ ❢ : P → R ✐s ❛ Z ✲♠❛♣ ✐❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❤♦❧❞✳ 1 ❚❤❡r❡ ✐s ❛ ☞♥✐t❡ s❡t { ▲ ✶ , . . . , ▲ ♠ } ♦❢ ❛✍♥❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s ▲ ✐ : R ♥ → R s✉❝❤ t❤❛t ❢ ( ① ) = ▲ ✐ ① ( ① ) ❢♦r s♦♠❡ ✶ � ✐ ① � ♠ ✳ ❆ ♣✐❡❝❡✇✐s❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ [ ✵ , ✶ ] → R ✳

  87. ♠ ❜❡t✇❡❡♥ ♣♦❧②❤❡❞r❛ ❛❧✇❛②s ✐s ♦❢ t❤❡ ♥ ❆ ♠❛♣ ❋ P ◗ ❢♦r♠ ❋ ❢ ✶ ❢ ♠ ✱ ❢ ✐ P ✳ ❚❤❡♥ ❋ ✐s ❛ ✲♠❛♣ ✐❢ ❡❛❝❤ ♦♥❡ ♦❢ ✐ts s❝❛❧❛r ❝♦♠♣♦♥❡♥ts ❢ ✐ ✐s✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t P ⊆ R ♥ ❜❡ ❛ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r♦♥✳ ❆ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ ❢ : P → R ✐s ❛ Z ✲♠❛♣ ✐❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❤♦❧❞✳ 1 ❚❤❡r❡ ✐s ❛ ☞♥✐t❡ s❡t { ▲ ✶ , . . . , ▲ ♠ } ♦❢ ❛✍♥❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s ▲ ✐ : R ♥ → R s✉❝❤ t❤❛t ❢ ( ① ) = ▲ ✐ ① ( ① ) ❢♦r s♦♠❡ ✶ � ✐ ① � ♠ ✳ 2 ❊❛❝❤ ▲ ✐ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧ ✇✐t❤ ✐♥t❡❣❡r ❝♦❡✍❝✐❡♥ts✳ ❆ ♣✐❡❝❡✇✐s❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ [ ✵ , ✶ ] → R ✳

  88. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ▲❡t P ⊆ R ♥ ❜❡ ❛ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r♦♥✳ ❆ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ ❢ : P → R ✐s ❛ Z ✲♠❛♣ ✐❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❤♦❧❞✳ 1 ❚❤❡r❡ ✐s ❛ ☞♥✐t❡ s❡t { ▲ ✶ , . . . , ▲ ♠ } ♦❢ ❛✍♥❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s ▲ ✐ : R ♥ → R s✉❝❤ t❤❛t ❢ ( ① ) = ▲ ✐ ① ( ① ) ❢♦r s♦♠❡ ✶ � ✐ ① � ♠ ✳ 2 ❊❛❝❤ ▲ ✐ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧ ✇✐t❤ ✐♥t❡❣❡r ❝♦❡✍❝✐❡♥ts✳ ❆ ♣✐❡❝❡✇✐s❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ [ ✵ , ✶ ] → R ✳ ❆ ♠❛♣ ❋ : P ⊆ R ♥ → ◗ ⊆ R ♠ ❜❡t✇❡❡♥ ♣♦❧②❤❡❞r❛ ❛❧✇❛②s ✐s ♦❢ t❤❡ ❢♦r♠ ❋ = ( ❢ ✶ , . . . , ❢ ♠ ) ✱ ❢ ✐ : P → R ✳ ❚❤❡♥ ❋ ✐s ❛ Z ✲♠❛♣ ✐❢ ❡❛❝❤ ♦♥❡ ♦❢ ✐ts s❝❛❧❛r ❝♦♠♣♦♥❡♥ts ❢ ✐ ✐s✳

  89. ❚❤❡ ❝❛t❡❣♦r② ♦❢ ☞♥✐t❡❧② ♣r❡s❡♥t❡❞ ▼❱✲❛❧❣❡❜r❛s✱ ❛♥❞ t❤❡✐r ❤♦♠♦♠♦r♣❤✐s♠s✱ ✐s ❡q✉✐✈❛❧❡♥t t♦ t❤❡ ♦♣♣♦s✐t❡ ♦❢ t❤❡ ❝❛t❡❣♦r② ♦❢ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛✱ ❛♥❞ t❤❡ ✲♠❛♣s ❛♠♦♥❣st t❤❡♠✳ ❱✳▼✳ ✫ ▲✳ ❙♣❛❞❛✱ ❉✉❛❧✐t②✱ ♣r♦❥❡❝t✐✈✐t②✱ ❛♥❞ ✉♥✐☞❝❛t✐♦♥ ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❛♥❞ ▼❱✲❛❧❣❡❜r❛s ✱ ❆♥♥❛❧s ♦❢ P✉r❡ ❛♥❞ ❆♣♣❧✐❡❞ ▲♦❣✐❝✱ ✷✵✶✷✳ ♦♣ ❢♣ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❘❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ ❛r❡ ♣r❡❝✐s❡❧② t❤❡ s✉❜s❡ts ♦❢ R ♥ t❤❛t ❛r❡ ❞❡☞♥❛❜❧❡ ❜② ❛ t❡r♠ ✐♥ t❤❡ ❧❛♥❣✉❛❣❡ ♦❢ ▼❱✲❛❧❣❡❜r❛s❀ ❛♥❞ Z ✲♠❛♣s ❛r❡ ♣r❡❝✐s❡❧② t❤❡ ❝♦♥t✐♥✉♦✉s tr❛♥s❢♦r♠❛t✐♦♥s t❤❛t ❛r❡ ❞❡☞♥❛❜❧❡ ❜② t✉♣❧❡s ♦❢ t❡r♠s ✐♥ t❤❛t ❧❛♥❣✉❛❣❡✳

  90. ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❘❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ ❛r❡ ♣r❡❝✐s❡❧② t❤❡ s✉❜s❡ts ♦❢ R ♥ t❤❛t ❛r❡ ❞❡☞♥❛❜❧❡ ❜② ❛ t❡r♠ ✐♥ t❤❡ ❧❛♥❣✉❛❣❡ ♦❢ ▼❱✲❛❧❣❡❜r❛s❀ ❛♥❞ Z ✲♠❛♣s ❛r❡ ♣r❡❝✐s❡❧② t❤❡ ❝♦♥t✐♥✉♦✉s tr❛♥s❢♦r♠❛t✐♦♥s t❤❛t ❛r❡ ❞❡☞♥❛❜❧❡ ❜② t✉♣❧❡s ♦❢ t❡r♠s ✐♥ t❤❛t ❧❛♥❣✉❛❣❡✳ Stone-type duality for finitely presented MV-algebras ❚❤❡ ❝❛t❡❣♦r② ♦❢ ☞♥✐t❡❧② ♣r❡s❡♥t❡❞ ▼❱✲❛❧❣❡❜r❛s✱ ❛♥❞ t❤❡✐r ❤♦♠♦♠♦r♣❤✐s♠s✱ ✐s ❡q✉✐✈❛❧❡♥t t♦ t❤❡ ♦♣♣♦s✐t❡ ♦❢ t❤❡ ❝❛t❡❣♦r② ♦❢ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛✱ ❛♥❞ t❤❡ Z ✲♠❛♣s ❛♠♦♥❣st t❤❡♠✳ ❱✳▼✳ ✫ ▲✳ ❙♣❛❞❛✱ ❉✉❛❧✐t②✱ ♣r♦❥❡❝t✐✈✐t②✱ ❛♥❞ ✉♥✐☞❝❛t✐♦♥ ✐♥ ✥ ▲✉❦❛s✐❡✇✐❝③ ❧♦❣✐❝ ❛♥❞ ▼❱✲❛❧❣❡❜r❛s ✱ ❆♥♥❛❧s ♦❢ P✉r❡ ❛♥❞ ❆♣♣❧✐❡❞ ▲♦❣✐❝✱ ✷✵✶✷✳ Poly ♦♣ MV ❢♣ Q

  91. ♥ ✱ t❤❡ ❋r♦♠ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ t♦ ▼❱✲❛❧❣❡❜r❛s ✿ ●✐✈❡♥ P ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ ✲♠❛♣s P ✵ ✶ ✐s ❛ ✭☞♥✐t❡❧② P ♣r❡s❡♥t❛❜❧❡✮ ▼❱✲❛❧❣❡❜r❛ ✉♥❞❡r t❤❡ ♣♦✐♥t✇✐s❡ ♦♣❡r❛t✐♦♥ ✐♥❤❡r✐t❡❞ ❢r♦♠ ✵ ✶ ✳ ❊①❛♠♣❧❡ ✳ ■❢ ✐s ✐❞❡♥t✐❝❛❧❧② ❡q✉❛❧ t♦ ✵ ✐♥ ❛♥② ① ✶ ① ♥ ▼❱✲❛❧❣❡❜r❛✱ t❤❡♥ ✐t ❣❡♥❡r❛t❡s t❤❡ tr✐✈✐❛❧ ✐❞❡❛❧ ✵ ✳ ■♥ t❤✐s ❝❛s❡✱ ✵ ✶ ♥ ✳ ❍❡♥❝❡ t❤❡ ❞✉❛❧s ♦❢ ❢r❡❡ ♥ ✱ ❛♥❞ ♥ ❛❧❣❡❜r❛s ❛r❡ t❤❡ ✉♥✐t ❝✉❜❡s✳ ✵ ✶ ♥ ❤♦♠❡♦♠♦r♣❤✐❝ t♦ t❤❡ ♠❛①✐♠❛❧ ❘❡♠❛r❦ ✳ ❚❤❡ s✉❜s♣❛❝❡ s♣❡❝tr❛❧ s♣❛❝❡ ♦❢ ✱ t♦♣♦❧♦❣✐s❡❞ ❜② t❤❡ ✭❛♥❛❧♦❣✉❡ ♦❢✮ t❤❡ ❩❛r✐s❦✐ ♥ t♦♣♦❧♦❣②✳ ❚❤❡ ▼❱✲❛❧❣❡❜r❛ P ✐s t❤❡ ❡①❛❝t ❛♥❛❧♦❣✉❡ ❢♦r r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ ♦❢ t❤❡ ❝♦♦r❞✐♥❛t❡ r✐♥❣ ♦❢ ❛♥ ❛✍♥❡ ❛❧❣❡❜r❛✐❝ ✈❛r✐❡t②✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❋r♦♠ ▼❱✲❛❧❣❡❜r❛s t♦ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ ✿ ●✐✈❡♥ F ♥ / � τ ( ① ✶ , . . . , ① ♥ ) � ✱ t❤❡ ❛ss♦❝✐❛t❡❞ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r♦♥ V ( τ ) ✐s t❤❡ s❡t ♦❢ ♥ ✲t✉♣❧❡s ( r ✶ , . . . , r ♥ ) ∈ [ ✵ , ✶ ] ♥ s✉❝❤ t❤❛t τ ( r ✶ , . . . , r ♥ ) = ✵ ✐♥ [ ✵ , ✶ ] ✳

  92. ❊①❛♠♣❧❡ ✳ ■❢ ✐s ✐❞❡♥t✐❝❛❧❧② ❡q✉❛❧ t♦ ✵ ✐♥ ❛♥② ① ✶ ① ♥ ▼❱✲❛❧❣❡❜r❛✱ t❤❡♥ ✐t ❣❡♥❡r❛t❡s t❤❡ tr✐✈✐❛❧ ✐❞❡❛❧ ✵ ✳ ■♥ t❤✐s ❝❛s❡✱ ✵ ✶ ♥ ✳ ❍❡♥❝❡ t❤❡ ❞✉❛❧s ♦❢ ❢r❡❡ ♥ ✱ ❛♥❞ ♥ ❛❧❣❡❜r❛s ❛r❡ t❤❡ ✉♥✐t ❝✉❜❡s✳ ✵ ✶ ♥ ❤♦♠❡♦♠♦r♣❤✐❝ t♦ t❤❡ ♠❛①✐♠❛❧ ❘❡♠❛r❦ ✳ ❚❤❡ s✉❜s♣❛❝❡ s♣❡❝tr❛❧ s♣❛❝❡ ♦❢ ✱ t♦♣♦❧♦❣✐s❡❞ ❜② t❤❡ ✭❛♥❛❧♦❣✉❡ ♦❢✮ t❤❡ ❩❛r✐s❦✐ ♥ t♦♣♦❧♦❣②✳ ❚❤❡ ▼❱✲❛❧❣❡❜r❛ P ✐s t❤❡ ❡①❛❝t ❛♥❛❧♦❣✉❡ ❢♦r r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ ♦❢ t❤❡ ❝♦♦r❞✐♥❛t❡ r✐♥❣ ♦❢ ❛♥ ❛✍♥❡ ❛❧❣❡❜r❛✐❝ ✈❛r✐❡t②✳ ✥ ▲✉❦❛s✐❡✇✐❝③ ❈❤❛♥❣ P♦❧②❤❡❞r❛ ❊♣✐❧♦❣✉❡ ❋r♦♠ ▼❱✲❛❧❣❡❜r❛s t♦ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ ✿ ●✐✈❡♥ F ♥ / � τ ( ① ✶ , . . . , ① ♥ ) � ✱ t❤❡ ❛ss♦❝✐❛t❡❞ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r♦♥ V ( τ ) ✐s t❤❡ s❡t ♦❢ ♥ ✲t✉♣❧❡s ( r ✶ , . . . , r ♥ ) ∈ [ ✵ , ✶ ] ♥ s✉❝❤ t❤❛t τ ( r ✶ , . . . , r ♥ ) = ✵ ✐♥ [ ✵ , ✶ ] ✳ ❋r♦♠ r❛t✐♦♥❛❧ ♣♦❧②❤❡❞r❛ t♦ ▼❱✲❛❧❣❡❜r❛s ✿ ●✐✈❡♥ P ⊆ R ♥ ✱ t❤❡ ❝♦❧❧❡❝t✐♦♥ ∇ ( P ) ♦❢ ❛❧❧ Z ✲♠❛♣s P → [ ✵ , ✶ ] ✐s ❛ ✭☞♥✐t❡❧② ♣r❡s❡♥t❛❜❧❡✮ ▼❱✲❛❧❣❡❜r❛ ✉♥❞❡r t❤❡ ♣♦✐♥t✇✐s❡ ♦♣❡r❛t✐♦♥ ✐♥❤❡r✐t❡❞ ❢r♦♠ [ ✵ , ✶ ] ✳

Recommend


More recommend