â âµâ³ â â¶ â â³ â¶ â⢠â â â â¶ âŠtâ€â¡rââsâ¡â³ â â â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ â¥âŠâ ââ¡ââ¥â¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââs â¢âŠr âŠâr â§âŠâ£ââⳠ⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â€âs â â ââ¥â¡â²âââ§ââ¡â sâ¡â ââ¥tââsâ¿ sâ£â¡ââââââ§â§â¡â± ââ¡ tââŠâ¡ [ âµ , â¶ ] â R âs â sâ¡t âŠâ¢ âtrât†âââ§ââ¡sâ§â³ â⥠âssââ£â¥â â¡â¥t âŠâ¢ trât†âââ§ââ¡sâ± âŠr â⥠â¡âââ§ââtââŠâ¥â± âŠr â â£âŠssâââ§â¡ ââŠrâ§â âs â⥠âssââ£â¥â â¡â¥t â : ââŠrâ â [ âµ , â¶ ] sâââ¥â¡ât t⊠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ trâtâ€â²â¢ââ¥âtââŠâ¥ââ§ ââŠâ¥ââtââŠâ¥s â¢âŠr ââ¥â¡ â¢âŠrâ ââ§â α ââ¥â β â³
â â¶ â â³ â¶ â⢠â â â â¶ âŠtâ€â¡rââsâ¡â³ â â ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ â¥âŠâ ââ¡ââ¥â¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââs â¢âŠr âŠâr â§âŠâ£ââⳠ⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â€âs â â ââ¥â¡â²âââ§ââ¡â sâ¡â ââ¥tââsâ¿ sâ£â¡ââââââ§â§â¡â± ââ¡ tââŠâ¡ [ âµ , â¶ ] â R âs â sâ¡t âŠâ¢ âtrât†âââ§ââ¡sâ§â³ â⥠âssââ£â¥â â¡â¥t âŠâ¢ trât†âââ§ââ¡sâ± âŠr â⥠â¡âââ§ââtââŠâ¥â± âŠr â â£âŠssâââ§â¡ ââŠrâ§â âs â⥠âssââ£â¥â â¡â¥t â : ââŠrâ â [ âµ , â¶ ] sâââ¥â¡ât t⊠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ trâtâ€â²â¢ââ¥âtââŠâ¥ââ§ ââŠâ¥ââtââŠâ¥s â¢âŠr ââ¥â¡ â¢âŠrâ ââ§â α ââ¥â β â³ â ( ⥠) = âµâ³
â¶ â⢠â â â â¶ âŠtâ€â¡rââsâ¡â³ â â â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ â¥âŠâ ââ¡ââ¥â¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââs â¢âŠr âŠâr â§âŠâ£ââⳠ⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â€âs â â ââ¥â¡â²âââ§ââ¡â sâ¡â ââ¥tââsâ¿ sâ£â¡ââââââ§â§â¡â± ââ¡ tââŠâ¡ [ âµ , â¶ ] â R âs â sâ¡t âŠâ¢ âtrât†âââ§ââ¡sâ§â³ â⥠âssââ£â¥â â¡â¥t âŠâ¢ trât†âââ§ââ¡sâ± âŠr â⥠â¡âââ§ââtââŠâ¥â± âŠr â â£âŠssâââ§â¡ ââŠrâ§â âs â⥠âssââ£â¥â â¡â¥t â : ââŠrâ â [ âµ , â¶ ] sâââ¥â¡ât t⊠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ trâtâ€â²â¢ââ¥âtââŠâ¥ââ§ ââŠâ¥ââtââŠâ¥s â¢âŠr ââ¥â¡ â¢âŠrâ ââ§â α ââ¥â β â³ â ( ⥠) = âµâ³ â ( ¬ α ) = â¶ â â ( α ) â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ â¥âŠâ ââ¡ââ¥â¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââs â¢âŠr âŠâr â§âŠâ£ââⳠ⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â€âs â â ââ¥â¡â²âââ§ââ¡â sâ¡â ââ¥tââsâ¿ sâ£â¡ââââââ§â§â¡â± ââ¡ tââŠâ¡ [ âµ , â¶ ] â R âs â sâ¡t âŠâ¢ âtrât†âââ§ââ¡sâ§â³ â⥠âssââ£â¥â â¡â¥t âŠâ¢ trât†âââ§ââ¡sâ± âŠr â⥠â¡âââ§ââtââŠâ¥â± âŠr â â£âŠssâââ§â¡ ââŠrâ§â âs â⥠âssââ£â¥â â¡â¥t â : ââŠrâ â [ âµ , â¶ ] sâââ¥â¡ât t⊠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ trâtâ€â²â¢ââ¥âtââŠâ¥ââ§ ââŠâ¥ââtââŠâ¥s â¢âŠr ââ¥â¡ â¢âŠrâ ââ§â α ââ¥â β â³ â ( ⥠) = âµâ³ â ( ¬ α ) = â¶ â â ( α ) Ⳡᅵ â¶ â⢠â ( α ) ᅵ â ( β ) â ( α â β ) = â¶ â ( â ( α ) â â ( β )) âŠtâ€â¡rââsâ¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ârâtâ€â²â¢ââ¥âtââŠâ¥ âŠâ¢ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥â³ ᅵ â¶ â⢠â ( α ) ᅵ â ( β ) â ( α â β ) = â¶ â ( â ( α ) â â ( β )) âŠtâ€â¡rââsâ¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ârâtâ€â²â¢ââ¥âtââŠâ¥ âŠâ¢ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥â³ â ( α â β ) = â â⥠{ â¶ , â¶ â ( â ( α ) â â ( β )) }
⣠âââ§sââ â±â¡rââ ⣠ââ¡â£âtââŠâ¥ ⣠â â â£â§âââtââŠâ¥ ââ²âttâââ¡â® ââsâ¥ââ¥âtââŠâ¥ ââ²âttâââ¡â® ââŠâ¥â¥ââ¥âtââŠâ¥ ââââŠâ¥ââtââŠâ¥ââ§ âtrâŠâ¥â£ ââsâ¥ââ¥âtââŠâ¥ âtrâŠâ¥â£ ââŠâ¥â¥ââ¥âtââŠâ¥ ââŠâ²ââ â£â§âââtââŠâ¥ ââŠâ¥â¥â¡âtâââ¡s â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ ârâ¡ âsââ¥â£ { ⥠, ¬ , â } âŠâ¥â§â¡ âs â£rââ âtâââ¡ ââŠâ¥â¥â¡âtâââ¡sâ³ ââ€â¡ râ¡â âââ¥ââ¥â£ âŠâ¥â¡s â †Ⱡ⚠Ⱡââ¥â â§ â® ârâ¡ ââ¡ââ¥âââ§â¡ âs â⥠ââ§âssââââ§ â§âŠâ£âââ³ ââ¥â ât âs ââstâŠâ ârâ¡ t⊠ââ¡ââ¥â¡ â âŠrâ¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ ârâ¡ âsââ¥â£ { ⥠, ¬ , â } âŠâ¥â§â¡ âs â£rââ âtâââ¡ ââŠâ¥â¥â¡âtâââ¡sâ³ ââ€â¡ râ¡â âââ¥ââ¥â£ âŠâ¥â¡s â †Ⱡ⚠Ⱡââ¥â â§ â® ârâ¡ ââ¡ââ¥âââ§â¡ âs â⥠ââ§âssââââ§ â§âŠâ£âââ³ ââ¥â ât âs ââstâŠâ ârâ¡ t⊠ââ¡ââ¥â¡ â âŠrâ¡â³ Notation Definition Name ⥠⣠âââ§sââ †¬ ⥠â±â¡rââ ¬ α ⣠ââ¡â£âtââŠâ¥ α â β ⣠â â â£â§âââtââŠâ¥ α ⚠β ( α â β ) â β ââ²âttâââ¡â® ââsâ¥ââ¥âtââŠâ¥ α ⧠β ¬ ( ¬ α ⚠¬ β ) ââ²âttâââ¡â® ââŠâ¥â¥ââ¥âtââŠâ¥ α â β ( α â β ) â§ ( β â α ) ââââŠâ¥ââtââŠâ¥â⧠α â β ¬ α â β âtrâŠâ¥â£ ââsâ¥ââ¥âtââŠâ¥ α â β ¬ ( α â ¬ β ) âtrâŠâ¥â£ ââŠâ¥â¥ââ¥âtââŠâ¥ α â β ¬ ( α â β ) ââŠâ²ââ â£â§âââtââŠâ¥ Table: ââŠâ¥â¥â¡âtâââ¡s â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ ââŠrrâ¡sâ£âŠâ¥âââ¥â£ â¢âŠrâ ââ§ sâ¡â ââ¥tââs âs âs â¢âŠâ§â§âŠâsâ¿ Notation Formal semantics ⥠â ( ⥠) = ⵠ†â ( †) = ⶠ¬ α â ( ¬ α ) = â¶ â â ( α ) α â β â ( α â β ) = â â⥠{ â¶ , â¶ â ( â ( α ) â â ( β )) } α ⚠β â ( α ⚠β ) = â ââ { â ( α ) , â ( β ) } α ⧠β â ( α ⧠β ) = â â⥠{ â ( α ) , â ( β ) } α â β â ( α â β ) = â¶ â | â ( α ) â â ( β ) | α â β â ( α â β ) = â â⥠{ â¶ , â ( α ) + â ( β ) } α â β â ( α â β ) = â ââ { âµ , â ( α ) + â ( β ) â â¶ } α â β â ( α â β ) = â ââ { âµ , â ( α ) â â ( β ) } Table: ââŠrâ ââ§ sâ¡â ââ¥tââs âŠâ¢ ââŠâ¥â¥â¡âtâââ¡s â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ârâtâ€â²â¢ââ¥âtââŠâ¥ âŠâ¢ ⥠â²ââŠâsââ¡âââ⢠âstrâŠâ¥â£ ââŠâ¥â¥ââ¥âtââŠâ¥â§ â â³ â ââŠtâ¡â¿ ââŠâ¥â²âââ¡â â£âŠtâ¡â¥t âŠâ£â¡râtââŠâ¥â³ â® â ( α â β ) = â ââ { âµ , â ( α ) + â ( β ) â â¶ }
â ââ â¢ââ§s⊠qââŠââ§âââ¡t â® â ââ¡rtâââ â¥âŠâ¥ ââtâr â® âPrââ¥âââ£â§â¡ âŠâ¢ â¥âŠâ¥â²ââŠâ¥trââââtââŠâ¥â® ââ²ââ âŠâ¢ ââŠâââ§â¡ â¥â¡â£âtââŠâ¥â® â ââŠâ¥sâ¡qââ¡â¥tââ â ârââââ§âs â® âââŠâ¥trââ£âŠsâtââŠâ¥â® âPrâ¡â²â§ââ¥â¡ârâtâ¡â® ââ¡ââ¥â¡â¿ ââât ââŠrâ âs tâ€â¡ sâ¡t âŠâ¢ ââ§â§ tââtâŠâ§âŠâ£ââ¡sâ³ â²râtâ¡â¿ t⊠â â¡â⥠ââât â³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ¥ââ§â¡tââ trâtâ€sâ± âŠr tââtâŠâ§âŠâ£ââ¡s ââ¢tâ¡r â²â³ â²âttâ£â¡â¥stâ¡ââ¥â± ârâ¡ â¥âŠâ ââ¡ââ¥â¡â âs tâ€âŠsâ¡ â¢âŠrâ ââ§â α â ââŠrâ tâ€ât ârâ¡ trââ¡ â⥠â¡ââ¡râ¡ â£âŠssâââ§â¡ ââŠrâ§ââ± ââ³â¡â³ sââ†tâ€ât â ( α ) = â¶ â¢âŠr ââ¥â¡ âssââ£â¥â â¡â¥t â â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ¥ââ§â¡tââ trâtâ€sâ± âŠr tââtâŠâ§âŠâ£ââ¡s ââ¢tâ¡r â²â³ â²âttâ£â¡â¥stâ¡ââ¥â± ârâ¡ â¥âŠâ ââ¡ââ¥â¡â âs tâ€âŠsâ¡ â¢âŠrâ ââ§â α â ââŠrâ tâ€ât ârâ¡ trââ¡ â⥠â¡ââ¡râ¡ â£âŠssâââ§â¡ ââŠrâ§ââ± ââ³â¡â³ sââ†tâ€ât â ( α ) = â¶ â¢âŠr ââ¥â¡ âssââ£â¥â â¡â¥t â Ⳡ⥠â α â ââ â¢ââ§s⊠qââŠââ§âââ¡t ⮠α ⚠¬ α â ââ¡rtâââ â¥âŠâ¥ ââtâr ⮠¬ ( α ⧠¬ α ) âPrââ¥âââ£â§â¡ âŠâ¢ â¥âŠâ¥â²ââŠâ¥trââââtââŠâ¥â® ¬¬ α â α ââ²ââ âŠâ¢ ââŠâââ§â¡ â¥â¡â£âtââŠâ¥â® â ââŠâ¥sâ¡qââ¡â¥tââ â ârââââ§âs â® ( ¬ α â α ) â α ( α â β ) â ( ¬ β â ¬ α ) âââŠâ¥trââ£âŠsâtââŠâ¥â® ( α â β ) âš ( β â α ) âPrâ¡â²â§ââ¥â¡ârâtâ¡â® ââ¡ââ¥â¡â¿ ââât â ââŠrâ âs tâ€â¡ sâ¡t âŠâ¢ ââ§â§ tââtâŠâ§âŠâ£ââ¡sâ³ â²râtâ¡â¿ ᅵ α t⊠â â¡â⥠α â ââât â³
ââ€â¡ sâ¡â¥tââtââ ââŠââ¥tâ¡râ£ârt âŠâ¢ â tââtâŠâ§âŠâ£â¡ âs â â£râŠââââ§â¡ â¢âŠrâ ââ§ââ± ââ§s⊠âââ§â§â¡â tâ€â¡âŠrâ¡â âŠâ¢ tâ€â¡ â§âŠâ£âââ³ â⊠ââ¡ââ¥â¡ â£râŠâââââ§âtâ¡â± ââ¡ sâ¡â§â¡ât ââât†â â§âŠt âŠâ¢ â€ââ¥âsââ£â€tâ® â sâ¡t âŠâ¢ tââtâŠâ§âŠâ£ââ¡sâ± ââ¥â ââ¡ââ§ârâ¡ tâ€ât tâ€â¡â¡ ârâ¡ ââ ââŠâ sâ¿ tâ€â¡â¡ ââŠââ¥t âs â£râŠââââ§â¡ â¢âŠrâ ââ§â ââ¡ ââ¡ââ¥âtââŠâ¥â³ ââ¡â t ââ¡ sâ¡â§â¡ât â sâ¡t âŠâ¢ ââ¡âââtââŠâ¥ rââ§â¡s tâ€ât tâ¡â§â§ âs tâ€ât â⢠ââ¡ ââ§râ¡âââ¡ â¡stâââ§âsâ€â¡â tâ€ât â¢âŠrâ ââ§â ⥠ârâ¡ â£râŠââââ§â¡â± ââ¥â â¶ tâ€â¡sâ¡ â€âââ¡ â ââ¡rtââ⥠sâ€ââ£â¡â± tâ€â¡â¥ â sâ£â¡ââââ â¢âŠrâ ââ§â âs ââ§s⊠â â£râŠââââ§â¡ â¢âŠrâ ââ§ââ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ âââtâŠâ§âŠâ£ââ¡s ârâ¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââ â¥âŠtââŠâ¥â³ â²âŠâ£ââ âs ââŠâ¥ââ¡râ¥â¡â âât†tâ€â¡ râ¡â§âtââŠâ¥sâ€â⣠ââ¡tââ¡â¡â¥ sâ¡â¥tââ âtâ€â¡ â§ââ¥â£âââ£â¡â® ââ¥â sâ¡â ââ¥tââs âtâ€â¡ ââŠrâ§ââ®â³
ââ¡â t ââ¡ sâ¡â§â¡ât â sâ¡t âŠâ¢ ââ¡âââtââŠâ¥ rââ§â¡s tâ€ât tâ¡â§â§ âs tâ€ât â⢠ââ¡ ââ§râ¡âââ¡ â¡stâââ§âsâ€â¡â tâ€ât â¢âŠrâ ââ§â ⥠ârâ¡ â£râŠââââ§â¡â± ââ¥â â¶ tâ€â¡sâ¡ â€âââ¡ â ââ¡rtââ⥠sâ€ââ£â¡â± tâ€â¡â¥ â sâ£â¡ââââ â¢âŠrâ ââ§â âs ââ§s⊠â â£râŠââââ§â¡ â¢âŠrâ ââ§ââ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ âââtâŠâ§âŠâ£ââ¡s ârâ¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââ â¥âŠtââŠâ¥â³ â²âŠâ£ââ âs ââŠâ¥ââ¡râ¥â¡â âât†tâ€â¡ râ¡â§âtââŠâ¥sâ€â⣠ââ¡tââ¡â¡â¥ sâ¡â¥tââ âtâ€â¡ â§ââ¥â£âââ£â¡â® ââ¥â sâ¡â ââ¥tââs âtâ€â¡ ââŠrâ§ââ®â³ ââ€â¡ sâ¡â¥tââtââ ââŠââ¥tâ¡râ£ârt âŠâ¢ â tââtâŠâ§âŠâ£â¡ âs â â£râŠââââ§â¡ â¢âŠrâ ââ§ââ± ââ§s⊠âââ§â§â¡â tâ€â¡âŠrâ¡â âŠâ¢ tâ€â¡ â§âŠâ£âââ³ â⊠ââ¡ââ¥â¡ â£râŠâââââ§âtâ¡â± ââ¡ sâ¡â§â¡ât ââât†â â§âŠt âŠâ¢ â€ââ¥âsââ£â€tâ® â sâ¡t âŠâ¢ tââtâŠâ§âŠâ£ââ¡sâ± ââ¥â ââ¡ââ§ârâ¡ tâ€ât tâ€â¡â¡ ârâ¡ ââ ââŠâ sâ¿ tâ€â¡â¡ ââŠââ¥t âs â£râŠââââ§â¡ â¢âŠrâ ââ§â ââ¡ ââ¡ââ¥âtââŠâ¥â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ âââtâŠâ§âŠâ£ââ¡s ârâ¡ â â¢âŠrâ ââ§ sâ¡â ââ¥tââ â¥âŠtââŠâ¥â³ â²âŠâ£ââ âs ââŠâ¥ââ¡râ¥â¡â âât†tâ€â¡ râ¡â§âtââŠâ¥sâ€â⣠ââ¡tââ¡â¡â¥ sâ¡â¥tââ âtâ€â¡ â§ââ¥â£âââ£â¡â® ââ¥â sâ¡â ââ¥tââs âtâ€â¡ ââŠrâ§ââ®â³ ââ€â¡ sâ¡â¥tââtââ ââŠââ¥tâ¡râ£ârt âŠâ¢ â tââtâŠâ§âŠâ£â¡ âs â â£râŠââââ§â¡ â¢âŠrâ ââ§ââ± ââ§s⊠âââ§â§â¡â tâ€â¡âŠrâ¡â âŠâ¢ tâ€â¡ â§âŠâ£âââ³ â⊠ââ¡ââ¥â¡ â£râŠâââââ§âtâ¡â± ââ¡ sâ¡â§â¡ât ââât†â â§âŠt âŠâ¢ â€ââ¥âsââ£â€tâ® â sâ¡t âŠâ¢ tââtâŠâ§âŠâ£ââ¡sâ± ââ¥â ââ¡ââ§ârâ¡ tâ€ât tâ€â¡â¡ ârâ¡ ââ ââŠâ sâ¿ tâ€â¡â¡ ââŠââ¥t âs â£râŠââââ§â¡ â¢âŠrâ ââ§â ââ¡ ââ¡ââ¥âtââŠâ¥â³ ââ¡â t ââ¡ sâ¡â§â¡ât â sâ¡t âŠâ¢ ââ¡âââtââŠâ¥ rââ§â¡s tâ€ât tâ¡â§â§ âs tâ€ât â⢠ââ¡ ââ§râ¡âââ¡ â¡stâââ§âsâ€â¡â tâ€ât â¢âŠrâ ââ§â α â¶ , . . . , α ⥠ârâ¡ â£râŠââââ§â¡â± ââ¥â tâ€â¡sâ¡ â€âââ¡ â ââ¡rtââ⥠sâ€ââ£â¡â± tâ€â¡â¥ â sâ£â¡ââââ â¢âŠrâ ââ§â β âs ââ§s⊠â â£râŠââââ§â¡ â¢âŠrâ ââ§ââ³
ââŠâ ââ¡ ââ¡ââ§ârâ¡ tâ€ât â â¢âŠrâ ââ§â ââŠrâ âs â£râŠââââ§â¡ â⢠tâ€â¡râ¡ â¡â âsts â â£râŠâŠâ¢ âŠâ¢ â± tâ€ât âsâ± â ââ¥âtâ¡ sâ¡qââ¡â¥ââ¡ âŠâ¢ â¢âŠrâ ââ§â â§ â sââ†tâ€âtâ¿ â¶ â³ â§ âââ†â â± â â§ âs â¡âtâ€â¡r â⥠ââ ââŠâ â± âŠr âs âŠâtâââ¥âââ§â¡ â¢râŠâ ⥠ââ¥â ⊠Ⱡ⥠⊠â â± âââ â⥠ââ£â£â§âââtââŠâ¥ âŠâ¢ â âŠââs â£âŠâ¥â¡â¥s â³ ââ¡ââ¥â¡â¿ ââ€â ââŠrâ âs tâ€â¡ sâ¡t âŠâ¢ â£râŠââââ§â¡ â¢âŠrâ ââ§ââ³ â²râtâ¡â¿ t⊠â â¡â⥠ââ€â â³ â²â¡ stââ§â§ â¥â¡â¡â t⊠ââ¡ââ¥â¡ tâ€â¡ ââ ââŠâ sⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ âŒâŠst ââ â£âŠrtââ¥t ââ¡âââtââŠâ¥ rââ§â¡ ââŠâ¥â§â¡ âŠâ¥â¡ ââ¡ âsâ¡â®â¿ â âŠââs â£âŠâ¥â¡â¥sⳠα α â β ( â ⣠) β
â²â¡ stââ§â§ â¥â¡â¡â t⊠ââ¡ââ¥â¡ tâ€â¡ ââ ââŠâ sâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ âŒâŠst ââ â£âŠrtââ¥t ââ¡âââtââŠâ¥ rââ§â¡ ââŠâ¥â§â¡ âŠâ¥â¡ ââ¡ âsâ¡â®â¿ â âŠââs â£âŠâ¥â¡â¥sⳠα α â β ( â ⣠) β ââŠâ ââ¡ ââ¡ââ§ârâ¡ tâ€ât â â¢âŠrâ ââ§â α â ââŠrâ âs â£râŠââââ§â¡ â⢠tâ€â¡râ¡ â¡â âsts â â£râŠâŠâ¢ âŠâ¢ α â± tâ€ât âsâ± â ââ¥âtâ¡ sâ¡qââ¡â¥ââ¡ âŠâ¢ â¢âŠrâ ââ§â α â¶ , . . . , α â§ â sââ†tâ€ât⿠α â§ = α â³ âââ†α â â± â < â§ âs â¡âtâ€â¡r â⥠ââ ââŠâ â± âŠr âs âŠâtâââ¥âââ§â¡ â¢râŠâ α ⥠ââ¥â α ⊠Ⱡ⥠, ⊠< â â± âââ â⥠ââ£â£â§âââtââŠâ¥ âŠâ¢ â âŠââs â£âŠâ¥â¡â¥s â³ ââ¡ââ¥â¡â¿ ââ€â â ââŠrâ âs tâ€â¡ sâ¡t âŠâ¢ â£râŠââââ§â¡ â¢âŠrâ ââ§ââ³ â²râtâ¡â¿ ⢠α t⊠â â¡â⥠α â ââ€â â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ âŒâŠst ââ â£âŠrtââ¥t ââ¡âââtââŠâ¥ rââ§â¡ ââŠâ¥â§â¡ âŠâ¥â¡ ââ¡ âsâ¡â®â¿ â âŠââs â£âŠâ¥â¡â¥sⳠα α â β ( â ⣠) β ââŠâ ââ¡ ââ¡ââ§ârâ¡ tâ€ât â â¢âŠrâ ââ§â α â ââŠrâ âs â£râŠââââ§â¡ â⢠tâ€â¡râ¡ â¡â âsts â â£râŠâŠâ¢ âŠâ¢ α â± tâ€ât âsâ± â ââ¥âtâ¡ sâ¡qââ¡â¥ââ¡ âŠâ¢ â¢âŠrâ ââ§â α â¶ , . . . , α â§ â sââ†tâ€ât⿠α â§ = α â³ âââ†α â â± â < â§ âs â¡âtâ€â¡r â⥠ââ ââŠâ â± âŠr âs âŠâtâââ¥âââ§â¡ â¢râŠâ α ⥠ââ¥â α ⊠Ⱡ⥠, ⊠< â â± âââ â⥠ââ£â£â§âââtââŠâ¥ âŠâ¢ â âŠââs â£âŠâ¥â¡â¥s â³ ââ¡ââ¥â¡â¿ ââ€â â ââŠrâ âs tâ€â¡ sâ¡t âŠâ¢ â£râŠââââ§â¡ â¢âŠrâ ââ§ââ³ â²râtâ¡â¿ ⢠α t⊠â â¡â⥠α â ââ€â â³ â²â¡ stââ§â§ â¥â¡â¡â t⊠ââ¡ââ¥â¡ tâ€â¡ ââ ââŠâ sâ³
ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ â â¢âŠrtââŠrââ³ â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ â ââŠâ¥trââ£âŠsâtââŠâ¥â³ ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³
â â¢âŠrtââŠrââ³ â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ â ââŠâ¥trââ£âŠsâtââŠâ¥â³ ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³
â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ â ââŠâ¥trââ£âŠsâtââŠâ¥â³ ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³
â ââŠâ¥trââ£âŠsâtââŠâ¥â³ ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³
ââŠâ¥trââ£âŠsâtââŠâ¥â³ ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) (( α â β ) â β ) â (( β â α ) â α ) â
ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) (( α â β ) â β ) â (( β â α ) â α ) â (A4) ( α â β ) â ( ¬ β â ¬ α ) ââŠâ¥trââ£âŠsâtââŠâ¥â³
â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) (( α â β ) â β ) â (( β â α ) â α ) â (A4) ( α â β ) â ( ¬ β â ¬ α ) ââŠâ¥trââ£âŠsâtââŠâ¥â³ (A5) ( ¬ α â α ) â α ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) (( α â β ) â β ) â (( β â α ) â α ) â (A4) ( α â β ) â ( ¬ β â ¬ α ) ââŠâ¥trââ£âŠsâtââŠâ¥â³ (A5) ( ¬ α â α ) â α ââŠâ¥sâ¡qââ¡â¥tââ âŒârââââ§âsâ³ â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ α ⚠β â¡ ( α â β ) â β âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tâ³
â¯â£âŠâ¥ ââ¡ââ¥ââ¥â£ âââµâ£ââºâ® râ¡ââ âs sâ€âŠâ⥠â¥â¡â tâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) ( α ⚠β ) â ( β ⚠α ) ââsâ¥ââ¥âtââŠâ¥ âs ââŠâ â âtâtâââ¡â³ (A4) ( α â β ) â ( ¬ β â ¬ α ) ââŠâ¥trââ£âŠsâtââŠâ¥â³ (A5) α ⚠¬ α ââ¡rtâââ â¥âŠâ¥ ââtârⳠα ⚠β â¡ ( α â β ) â β
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ââ§âssââââ§ â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) ( α ⚠β ) â ( β ⚠α ) ââsâ¥ââ¥âtââŠâ¥ âs ââŠâ â âtâtâââ¡â³ (A4) ( α â β ) â ( ¬ β â ¬ α ) ââŠâ¥trââ£âŠsâtââŠâ¥â³ (A5) α ⚠¬ α ââ¡rtâââ â¥âŠâ¥ ââtârⳠα ⚠β â¡ ( α â β ) â β ââ¡âââtââŠâ¥ rââ§â¡ â¢âŠr ââ§âssââââ§ â§âŠâ£ââⳠα α â β (R1) âŒâŠââs â£âŠâ¥â¡â¥sⳠβ
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ ââŠâ sâ¡stâ¡â â¢âŠr ⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³ (A0) ⥠â α ââ â¢ââ§s⊠qââŠââ§âââ¡tâ³ (A1) α â ( β â α ) â â¢âŠrtââŠrââ³ (A2) ( α â β ) â (( β â γ ) â ( α â γ )) â â â£â§âââtââŠâ¥ âs trââ¥sâtâââ¡â³ (A3) ( α ⚠β ) â ( β ⚠α ) ââsâ¥ââ¥âtââŠâ¥ âs ââŠâ â âtâtâââ¡â³ (A4) ( α â β ) â ( ¬ β â ¬ α ) ââŠâ¥trââ£âŠsâtââŠâ¥â³ (A5) α ⚠¬ α ââ¡rtâââ â¥âŠâ¥ ââtârⳠα ⚠β â¡ ( α â β ) â β ââ¡âââtââŠâ¥ rââ§â¡ â¢âŠr ⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââⳠα α â β (R1) âŒâŠââs â£âŠâ¥â¡â¥sⳠβ
âââ†âsâââââ¥t ââ¡sârââ£tââŠâ¥sâ§ ââ⥠ââ¡ â£âŠâ§â¡sâ¡â âŠâs t⊠â sârâ£râsââ¥â£ â¡â tâ¡â¥t ââ¥ââ¡â¡âⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£â⡠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ ââ⥠ââ¡ sâââââ¥âtâ§â¡ ââ¡sârâââ¡â âs ââ§âssââââ§ â§âŠâ£ââ ââtâ€âŠât tâ€â¡ ârâstâŠtâ¡â§ââ⥠â§ââ âŠâ¢ ââ¡rtâââ â¥âŠâ¥ ââtâr â± âât âât†tâ€â¡ ââ â¢ââ§s⊠qââŠââ§âââ¡t â§âââ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£â⡠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ ââ⥠ââ¡ sâââââ¥âtâ§â¡ ââ¡sârâââ¡â âs ââ§âssââââ§ â§âŠâ£ââ ââtâ€âŠât tâ€â¡ ârâstâŠtâ¡â§ââ⥠â§ââ âŠâ¢ ââ¡rtâââ â¥âŠâ¥ ââtâr â± âât âât†tâ€â¡ ââ â¢ââ§s⊠qââŠââ§âââ¡t â§âââ³ âââ†âsâââââ¥t ââ¡sârââ£tââŠâ¥sâ§ ââ⥠ââ¡ â£âŠâ§â¡sâ¡â âŠâs t⊠â sârâ£râsââ¥â£ â¡â tâ¡â¥t ââ¥ââ¡â¡ââ³
âŒâŠrââ§â¿ ââ€â¡ ââ â£âŠrt âŠâ¢ râ¡â âŠâââ¥â£ âŠâ¥â¡ ââ ââŠâ â¢râŠâ â⥠ââ ââŠâ sâ¡stâ¡â ââ¡â£â¡â¥âs âŠâ¥ tâ€â¡ ââ ââŠâ sâ¡stâ¡â âtsâ¡â§â¢â³ â ⥠â£ârtââââ§ârâ± âââ§ââ¡rtâ²stâ¡â§â¡ sâ¡stâ¡â s ârâ¡ âŠâ¢ â§âttâ§â¡ âsâ¡ t⊠ââ¥ââ§â¡sâ¡ tâ€â¡ strââtârââ§ â£râŠâ£â¡rtââ¡s âŠâ¢ â§âŠâ£ââs â⥠tâ¡râ s âŠâ¢ â sâ£â¡ââââ ââ ââŠâ âtâsâtââŠâ¥â³ âââŠr tâ€âsâ± tâ€â¡ ââ¡â¥tâ¢â¡â¥â²stâ¡â§â¡ sâ¡stâ¡â s âsâ¡â â⥠â£râŠâŠâ¢ tâ€â¡âŠrâ¡ ârâ¡ â âŠrâ¡ âsâ¡â¢ââ§â³â® ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£â⡠⥠â²ââŠâsââ¡âââ⢠â â¥tââtââŠâ¥âstââ â§âŠâ£ââ ââ⥠ââ¡ sâââââ¥âtâ§â¡ ââ¡sârâââ¡â âs ââ§âssââââ§ â§âŠâ£ââ ââtâ€âŠât tâ€â¡ ârâstâŠtâ¡â§ââ⥠â§ââ âŠâ¢ ââ¡rtâââ â¥âŠâ¥ ââtâr â± âât âât†tâ€â¡ ââ â¢ââ§s⊠qââŠââ§âââ¡t â§âââ³ â¶ âââ†âsâââââ¥t ââ¡sârââ£tââŠâ¥sâ§ ââ⥠ââ¡ â£âŠâ§â¡sâ¡â âŠâs t⊠â sârâ£râsââ¥â£ â¡â tâ¡â¥t ââ¥ââ¡â¡ââ³ â¶ ââ§â âŠst ââ¡rââtââ â¢râŠâ ââ³ âŒâŠsââ€âŠâââŠâsâ± â â¥tââtââŠâ¥âstââ â²âŠâ£ââ â± ââ€â¡ âtââ¥â¢âŠrâ ââ¥ââ¡ââ§âŠâ£â¡âââ âŠâ¢ Pâ€ââ§âŠsâŠâ£â€â¡â± â·âµâ¶âµâ± âââârâ ââ³ â©ââ§tâ ââ¡ââ³â®â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£â⡠⥠â²ââŠâsââ¡âââ⢠â â¥tââtââŠâ¥âstââ â§âŠâ£ââ ââ⥠ââ¡ sâââââ¥âtâ§â¡ ââ¡sârâââ¡â âs ââ§âssââââ§ â§âŠâ£ââ ââtâ€âŠât tâ€â¡ ârâstâŠtâ¡â§ââ⥠â§ââ âŠâ¢ ââ¡rtâââ â¥âŠâ¥ ââtâr â± âât âât†tâ€â¡ ââ â¢ââ§s⊠qââŠââ§âââ¡t â§âââ³ â¶ âââ†âsâââââ¥t ââ¡sârââ£tââŠâ¥sâ§ ââ⥠ââ¡ â£âŠâ§â¡sâ¡â âŠâs t⊠â sârâ£râsââ¥â£ â¡â tâ¡â¥t ââ¥ââ¡â¡ââ³ âŒâŠrââ§â¿ ââ€â¡ ââ â£âŠrt âŠâ¢ râ¡â âŠâââ¥â£ âŠâ¥â¡ ââ ââŠâ â¢râŠâ â⥠ââ ââŠâ â¿â¿â¿â¿â¿â¿ sâ¡stâ¡â ââ¡â£â¡â¥âs âŠâ¥ tâ€â¡ ââ ââŠâ sâ¡stâ¡â âtsâ¡â§â¢â³ â ⥠â£ârtââââ§ârâ± âââ§ââ¡rtâ²stâ¡â§â¡ sâ¡stâ¡â s ârâ¡ âŠâ¢ â§âttâ§â¡ âsâ¡ t⊠ââ¥ââ§â¡sâ¡ tâ€â¡ strââtârââ§ â£râŠâ£â¡rtââ¡s âŠâ¢ â§âŠâ£ââs â⥠tâ¡râ s âŠâ¢ â sâ£â¡ââââ ââ ââŠâ âtâsâtââŠâ¥â³ âââŠr tâ€âsâ± tâ€â¡ ââ¡â¥tâ¢â¡â¥â²stâ¡â§â¡ sâ¡stâ¡â s âsâ¡â â⥠â£râŠâŠâ¢ tâ€â¡âŠrâ¡ ârâ¡ â âŠrâ¡ âsâ¡â¢ââ§â³â® â¶ ââ§â âŠst ââ¡rââtââ â¢râŠâ ââ³ âŒâŠsââ€âŠâââŠâsâ± â â¥tââtââŠâ¥âstââ â²âŠâ£ââ â± ââ€â¡ âtââ¥â¢âŠrâ ââ¥ââ¡ââ§âŠâ£â¡âââ âŠâ¢ Pâ€ââ§âŠsâŠâ£â€â¡â± â·âµâ¶âµâ± âââârâ ââ³ â©ââ§tâ ââ¡ââ³â®â³
ââât ââ€â ââ³ ââŠsâ¡ ââ¥â ââ³ âârâŠâ§â¡â¡ ââŠssâ¡râ± ârââ¥sâ³ âŠâ¢ tâ€â¡ ââŒâ â± â¶âŸâºâœâ³ PrâŠâŠâ¢ âs sâ¡â¥tââtâââ³ ââ§â£â¡ârâââ â£râŠâŠâ¢ â£âââ¡â¥ sâ€âŠrtâ§â¡ tâ€â¡râ¡ââ¢tâ¡r ââ¡ ââ³ââ³ ââ€ââ¥â£â± ââ€ââ†ââ¥trâŠââââ¡â âŒâ±â²ââ§â£â¡ârâs â¢âŠr tâ€âs â£ârâ£âŠsâ¡â³ â²â¡ âââ§â§ râ¡târ⥠t⊠tâ€â¡â â⢠tââ â¡ ââ§â§âŠâsâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€âs ââŠâ¥ââ§âââ¡s âŠâr ââ¡ââ¥âtââŠâ¥ âŠâ¢ ⥠â²ââŠâsââ¡âââ⢠ââ£râŠâ£âŠsâtââŠâ¥ââ§â® â§âŠâ£âââ³ â ârst ââ â£âŠrtââ¥t râ¡sââ§tâ³ â ⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ± tâ€â¡ râ¡â§âtââŠâ¥sâ€â⣠ââ¡tââ¡â¡â¥ tââtâŠâ§âŠâ£ââ¡s ââ¥â tâ€â¡âŠrâ¡â s âs â¡â¥târâ¡â§â¡ ââ¥ââ§âŠâ£âŠâs t⊠tâ€â¡ âŠâ¥â¡ tâ€ât â€âŠâ§âs â⥠ââ§âssââââ§ â§âŠâ£âââ³ â t âs stâtâ¡â â⥠tâ€â¡ â¥â¡â t râ¡sââ§tâ± â sââstââ¥tâââ§ â£ââ¡ââ¡ âŠâ¢ â âtâ€â¡â âtââsâ¿
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€âs ââŠâ¥ââ§âââ¡s âŠâr ââ¡ââ¥âtââŠâ¥ âŠâ¢ ⥠â²ââŠâsââ¡âââ⢠ââ£râŠâ£âŠsâtââŠâ¥ââ§â® â§âŠâ£âââ³ â ârst ââ â£âŠrtââ¥t râ¡sââ§tâ³ â ⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ± tâ€â¡ râ¡â§âtââŠâ¥sâ€â⣠ââ¡tââ¡â¡â¥ tââtâŠâ§âŠâ£ââ¡s ââ¥â tâ€â¡âŠrâ¡â s âs â¡â¥târâ¡â§â¡ ââ¥ââ§âŠâ£âŠâs t⊠tâ€â¡ âŠâ¥â¡ tâ€ât â€âŠâ§âs â⥠ââ§âssââââ§ â§âŠâ£âââ³ â t âs stâtâ¡â â⥠tâ€â¡ â¥â¡â t râ¡sââ§tâ± â sââstââ¥tâââ§ â£ââ¡ââ¡ âŠâ¢ â âtâ€â¡â âtââsâ¿ Soundness and Completeness Theorem for ᅵ L ââât = ââ€â . ââ³ ââŠsâ¡ ââ¥â ââ³ âârâŠâ§â¡â¡ ââŠssâ¡râ± ârââ¥sâ³ âŠâ¢ tâ€â¡ ââŒâ â± â¶âŸâºâœâ³ PrâŠâŠâ¢ âs sâ¡â¥tââtâââ³ ââ§â£â¡ârâââ â£râŠâŠâ¢ â£âââ¡â¥ sâ€âŠrtâ§â¡ tâ€â¡râ¡ââ¢tâ¡r ââ¡ ââ³ââ³ ââ€ââ¥â£â± ââ€ââ†ââ¥trâŠââââ¡â âŒâ±â²ââ§â£â¡ârâs â¢âŠr tâ€âs â£ârâ£âŠsâ¡â³ â²â¡ âââ§â§ râ¡târ⥠t⊠tâ€â¡â â⢠tââ â¡ ââ§â§âŠâsâ³
ââŠr ââ¥â¡ ââŠrâ â± ââ¥â ââ¥â¡ sâ¡t â ââŠrâ â± ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± â â â ⥠tâ€â¡ ââtâââ§ âsâ¡ âŠâ¢ ââ¥â¡ â§âŠâ£âââ± ât âs âŠâ¢ â£râ¡ât ââ â£âŠrtââ¥ââ¡ t⊠â€âââ¡ ââŠâ â£â§â¡tâ¡â¥â¡ss ââ¥ââ¡r ââââtââŠâ¥ââ§ sâ¡ts â âŠâ¢ âssââ â£tââŠâ¥sâ³ â t âs â tâ€ât â¡â¥ââŠââ¡s âŠâr âŠâ¥âŠââ§â¡ââ£â¡ âââŠât â sâ£â¡ââââ ââ£â£â§âââtââŠâ¥ ââŠâ âââ¥â³ Pârâ¡ â§âŠâ£ââ â â â® ââ⥠tâ¡ââ†âs â¥âŠtâ€ââ¥â£ âââŠât tâ€â¡ ââŠrâ§ââ± ââ¡ ââ¡ââ¥âtââŠâ¥â³ ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ§âssââââ§ â§âŠâ£ââ sâtâsââ¡s â strâŠâ¥â£â¡r ââŠâ â£â§â¡tâ¡â¥â¡ss tâ€â¡âŠrâ¡â â³ ââŠr â , { α } â ââŠrâ â± ârâtâ¡ â ⢠α â⢠α âs â£râŠââââ§â¡ â¢âŠrâ tâ€â¡ â§âŠâ£ââââ§ ââ ââŠâ s âââ£â â¡â¥tâ¡â ââ¡ â â± ââ¥â â ᅵ α â⢠α â€âŠâ§âs â⥠â¡ââ†â âŠââ¡â§ âââ£âŠssâââ§â¡ ââŠrâ§ââ± âssââ£â¥â â¡â¥tâ® ââ€â¡râ¡â⥠â¡ââ†â¢âŠrâ ââ§â âŠâ¢ â â€âŠâ§âsâ³
â ⥠tâ€â¡ ââtâââ§ âsâ¡ âŠâ¢ ââ¥â¡ â§âŠâ£âââ± ât âs âŠâ¢ â£râ¡ât ââ â£âŠrtââ¥ââ¡ t⊠â€âââ¡ ââŠâ â£â§â¡tâ¡â¥â¡ss ââ¥ââ¡r ââââtââŠâ¥ââ§ sâ¡ts â âŠâ¢ âssââ â£tââŠâ¥sâ³ â t âs â tâ€ât â¡â¥ââŠââ¡s âŠâr âŠâ¥âŠââ§â¡ââ£â¡ âââŠât â sâ£â¡ââââ ââ£â£â§âââtââŠâ¥ ââŠâ âââ¥â³ Pârâ¡ â§âŠâ£ââ â â â® ââ⥠tâ¡ââ†âs â¥âŠtâ€ââ¥â£ âââŠât tâ€â¡ ââŠrâ§ââ± ââ¡ ââ¡ââ¥âtââŠâ¥â³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ§âssââââ§ â§âŠâ£ââ sâtâsââ¡s â strâŠâ¥â£â¡r ââŠâ â£â§â¡tâ¡â¥â¡ss tâ€â¡âŠrâ¡â â³ ââŠr â , { α } â ââŠrâ â± ârâtâ¡ â ⢠α â⢠α âs â£râŠââââ§â¡ â¢âŠrâ tâ€â¡ â§âŠâ£ââââ§ ââ ââŠâ s âââ£â â¡â¥tâ¡â ââ¡ â â± ââ¥â â ᅵ α â⢠α â€âŠâ§âs â⥠â¡ââ†â âŠââ¡â§ âââ£âŠssâââ§â¡ ââŠrâ§ââ± âssââ£â¥â â¡â¥tâ® ââ€â¡râ¡â⥠â¡ââ†â¢âŠrâ ââ§â âŠâ¢ â â€âŠâ§âsâ³ Strong Completeness Theorem for CL ââŠr ââ¥â¡ α â ââŠrâ â± ââ¥â ââ¥â¡ sâ¡t â â ââŠrâ â± â ᅵ α ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± â ⢠α .
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ§âssââââ§ â§âŠâ£ââ sâtâsââ¡s â strâŠâ¥â£â¡r ââŠâ â£â§â¡tâ¡â¥â¡ss tâ€â¡âŠrâ¡â â³ ââŠr â , { α } â ââŠrâ â± ârâtâ¡ â ⢠α â⢠α âs â£râŠââââ§â¡ â¢âŠrâ tâ€â¡ â§âŠâ£ââââ§ ââ ââŠâ s âââ£â â¡â¥tâ¡â ââ¡ â â± ââ¥â â ᅵ α â⢠α â€âŠâ§âs â⥠â¡ââ†â âŠââ¡â§ âââ£âŠssâââ§â¡ ââŠrâ§ââ± âssââ£â¥â â¡â¥tâ® ââ€â¡râ¡â⥠â¡ââ†â¢âŠrâ ââ§â âŠâ¢ â â€âŠâ§âsâ³ Strong Completeness Theorem for CL ââŠr ââ¥â¡ α â ââŠrâ â± ââ¥â ââ¥â¡ sâ¡t â â ââŠrâ â± â ᅵ α ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± â ⢠α . â ⥠tâ€â¡ ââtâââ§ âsâ¡ âŠâ¢ ââ¥â¡ â§âŠâ£âââ± ât âs âŠâ¢ â£râ¡ât ââ â£âŠrtââ¥ââ¡ t⊠â€âââ¡ ââŠâ â£â§â¡tâ¡â¥â¡ss ââ¥ââ¡r ââââtââŠâ¥ââ§ sâ¡ts â âŠâ¢ âssââ â£tââŠâ¥sâ³ â t âs â tâ€ât â¡â¥ââŠââ¡s âŠâr âŠâ¥âŠââ§â¡ââ£â¡ âââŠât â sâ£â¡ââââ ââ£â£â§âââtââŠâ¥ ââŠâ âââ¥â³ Pârâ¡ â§âŠâ£ââ â â = â â® ââ⥠tâ¡ââ†âs â¥âŠtâ€ââ¥â£ âââŠât tâ€â¡ ââŠrâ§ââ± ââ¡ ââ¡ââ¥âtââŠâ¥â³
â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â¢âââ§s strâŠâ¥â£ ââŠâ â£â§â¡tâ¡â¥â¡ssⳠ⥠â²â¡t â ââ¡ tâ€â¡ sâ¡t âŠâ¢ â¢âŠrâ ââ§â â⥠âŠâ¥â¡ âârââââ§â¡ â£ â¿ Ï â¥ ( ⣠) := (( ⥠+ â¶ )( ⣠⥠⧠¬ ⣠)) â ⣠⥠+ â¶ , â¢âŠr â¡ââ†ââ¥tâ¡â£â¡r ⥠ᅵ â¶â± ââ€â¡r⡠⣠⊠:= ⣠â · · · â ⣠, ᅵ ᅵᅵ ᅵ ⊠tââ â¡s âŠâ£ := ⣠â · · · â ⣠. ᅵ ᅵᅵ ᅵ ⊠tââ â¡s ââ€â¡â¥ â ᅵ⢠⥠Ⲡ⣠Ⱡâât â ᅵ ⥠Ⲡ⣠â³
ââ¡â¥tââtââââ§â§â¡â± ât ââŠâ¡s â¥âŠt â¢âŠâ§â§âŠâ tâ€âtâ¿ âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ â¶â³â§â± ââ³â¡â³ â Ⲡ⣠Ⳡââ€âs âs ââ¡âââsâ¡ ââ¥â¡ â£râŠâŠâ¢ âŠâ¢ ⣠⥠â¢râŠâ â ââ⥠âŠâ¥â§â¡ âsâ¡s â ââ¥âtâ¡ sââsâ¡t âŠâ¢ â â³ ââ¡â ââ¥tââââ§â§â¡â± tâ€â¡ âŠâ¥â§â¡ â£âŠssâââ§â¡ ââŠrâ§â ââŠâ â£âtâââ§â¡ âât†ââ§â§ âŠâ¢ â âs tâ€â¡ âŠâ¥â¡ sââ†tâ€ât â ⣠â¶â± ââ³â¡â³ â Ⲡ⣠Ⳡ⥠âââŠââ¥â£ stâŠââŠâ³ â² âs â± âât â² âs â¥âŠtⳠ⥠⥠ââŠtâ¡â³ â ââ§âââ¡sâ³ â ⥠ⲠⲠ⥠â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â ᅵ⢠⥠Ⲡ⣠Ⱡâât â ᅵ ⥠Ⲡ⣠Ⳡâ â¥tââtâââ¡â§â¡â± â¡âŠâ ââ⥠tâ€ââ¥âŠ âŠâ¢ â âs â¡â ââŠââ¡ââ¥â£ tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ ââ¥ââ¥âtâ¡ sâ¡t âŠâ¢ âssââ â£tââŠâ¥sâ¿ 1 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â¶ / â·â³ 2 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â· / âžâ³ 3 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ âž / â¹â³ 4 â³ â³ â³
ââ¡â ââ¥tââââ§â§â¡â± tâ€â¡ âŠâ¥â§â¡ â£âŠssâââ§â¡ ââŠrâ§â ââŠâ â£âtâââ§â¡ âât†ââ§â§ âŠâ¢ â âs tâ€â¡ âŠâ¥â¡ sââ†tâ€ât â ⣠â¶â± ââ³â¡â³ â Ⲡ⣠Ⳡ⥠âââŠââ¥â£ stâŠââŠâ³ â² âs â± âât â² âs â¥âŠtⳠ⥠⥠ââŠtâ¡â³ â ââ§âââ¡sâ³ â Ⲡ⥠Ⲡ⥠⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â ᅵ⢠⥠Ⲡ⣠Ⱡâât â ᅵ ⥠Ⲡ⣠Ⳡâ â¥tââtâââ¡â§â¡â± â¡âŠâ ââ⥠tâ€ââ¥âŠ âŠâ¢ â âs â¡â ââŠââ¡ââ¥â£ tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ ââ¥ââ¥âtâ¡ sâ¡t âŠâ¢ âssââ â£tââŠâ¥sâ¿ 1 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â¶ / â·â³ 2 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â· / âžâ³ 3 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ âž / â¹â³ 4 â³ â³ â³ ââ¡â¥tââtââââ§â§â¡â± ât ââŠâ¡s â¥âŠt â¢âŠâ§â§âŠâ tâ€âtâ¿ âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ = â¶â³â§â± ââ³â¡â³ â ᅵ⢠⥠Ⲡ⣠Ⳡââ€âs âs ââ¡âââsâ¡ ââ¥â¡ â£râŠâŠâ¢ âŠâ¢ ⣠â¢râŠâ â ââ⥠âŠâ¥â§â¡ âsâ¡s â ââ¥âtâ¡ sââsâ¡t âŠâ¢ â â³
âââŠââ¥â£ stâŠââŠâ³ â² âs â± âât â² âs â¥âŠtⳠ⥠⥠ââŠtâ¡â³ â ââ§âââ¡sâ³ â Ⲡ⥠Ⲡ⥠â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â ᅵ⢠⥠Ⲡ⣠Ⱡâât â ᅵ ⥠Ⲡ⣠Ⳡâ â¥tââtâââ¡â§â¡â± â¡âŠâ ââ⥠tâ€ââ¥âŠ âŠâ¢ â âs â¡â ââŠââ¡ââ¥â£ tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ ââ¥ââ¥âtâ¡ sâ¡t âŠâ¢ âssââ â£tââŠâ¥sâ¿ 1 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â¶ / â·â³ 2 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â· / âžâ³ 3 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ âž / â¹â³ 4 â³ â³ â³ ââ¡â¥tââtââââ§â§â¡â± ât ââŠâ¡s â¥âŠt â¢âŠâ§â§âŠâ tâ€âtâ¿ âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ = â¶â³â§â± ââ³â¡â³ â ᅵ⢠⥠Ⲡ⣠Ⳡââ€âs âs ââ¡âââsâ¡ ââ¥â¡ â£râŠâŠâ¢ âŠâ¢ ⣠â¢râŠâ â ââ⥠âŠâ¥â§â¡ âsâ¡s â ââ¥âtâ¡ sââsâ¡t âŠâ¢ â â³ ââ¡â ââ¥tââââ§â§â¡â± tâ€â¡ âŠâ¥â§â¡ â£âŠssâââ§â¡ ââŠrâ§â ââŠâ â£âtâââ§â¡ âât†ââ§â§ âŠâ¢ â âs tâ€â¡ âŠâ¥â¡ sââ†tâ€ât â ( ⣠) = â¶â± ââ³â¡â³ â ᅵ ⥠Ⲡ⣠â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â ᅵ⢠⥠Ⲡ⣠Ⱡâât â ᅵ ⥠Ⲡ⣠Ⳡâ â¥tââtâââ¡â§â¡â± â¡âŠâ ââ⥠tâ€ââ¥âŠ âŠâ¢ â âs â¡â ââŠââ¡ââ¥â£ tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ ââ¥ââ¥âtâ¡ sâ¡t âŠâ¢ âssââ â£tââŠâ¥sâ¿ 1 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â¶ / â·â³ 2 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ â· / âžâ³ 3 ⣠:= âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ ᅵ âž / â¹â³ 4 â³ â³ â³ ââ¡â¥tââtââââ§â§â¡â± ât ââŠâ¡s â¥âŠt â¢âŠâ§â§âŠâ tâ€âtâ¿ âââ¥â¢âŠ âs tââ§â§â§ âs trââ¡ t⊠ââ¡â£râ¡â¡ = â¶â³â§â± ââ³â¡â³ â ᅵ⢠⥠Ⲡ⣠Ⳡââ€âs âs ââ¡âââsâ¡ ââ¥â¡ â£râŠâŠâ¢ âŠâ¢ ⣠â¢râŠâ â ââ⥠âŠâ¥â§â¡ âsâ¡s â ââ¥âtâ¡ sââsâ¡t âŠâ¢ â â³ ââ¡â ââ¥tââââ§â§â¡â± tâ€â¡ âŠâ¥â§â¡ â£âŠssâââ§â¡ ââŠrâ§â ââŠâ â£âtâââ§â¡ âât†ââ§â§ âŠâ¢ â âs tâ€â¡ âŠâ¥â¡ sââ†tâ€ât â ( ⣠) = â¶â± ââ³â¡â³ â ᅵ ⥠Ⲡ⣠ⳠâââŠââ¥â£ stâŠââŠâ³ ⢠⥠Ⲡâs compact â± âât ᅵ ⥠Ⲡâs â¥âŠtâ³ ââŠtâ¡â³ â ⢠⥠Ⲡα â â ᅵ ⥠Ⲡα ââ§âââ¡sâ³
â â¢âŠâ§âŠâ§âŠrâ¡ tâ€â¡âŠrâ¡â â¿ ââŠr ââ¥â¡ ââŠrâ â± ââ¥â ââ¥â¡ â ââ ââ ââ§ ââŠâ¥sâstâ¡â¥t sâ¡t ⌠ââŠrâ â± ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⌠⌠Ⲡ⥠Ⲡ⥠â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ âââ¡â²â²â âŠâ¥ââââŠâ ââ€â¡âŠrâ¡â â¿ Completeness Theorem for f.a. theories in ᅵ L ââŠr ââ¥â¡ α â ââŠrâ â± ââ¥â ââ¥â¡ ââ¥âtâ¡ sâ¡t â â ââŠrâ ⱠⲠα ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± â ⢠⥠Ⲡα . â ᅵ â¥
â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ âââ¡â²â²â âŠâ¥ââââŠâ ââ€â¡âŠrâ¡â â¿ Completeness Theorem for f.a. theories in ᅵ L ââŠr ââ¥â¡ α â ââŠrâ â± ââ¥â ââ¥â¡ ââ¥âtâ¡ sâ¡t â â ââŠrâ ⱠⲠα ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± â ⢠⥠Ⲡα . â ᅵ ⥠â â¢âŠâ§âŠâ§âŠrâ¡ tâ€â¡âŠrâ¡â â¿ Completeness Theorem for maximal theories in ᅵ L ââŠr ââ¥â¡ α â ââŠrâ â± ââ¥â ââ¥â¡ â ââ ââ ââ§ ââŠâ¥sâstâ¡â¥t sâ¡t ⌠â ââŠrâ ⱠⲠα ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⌠⢠⥠Ⲡα . ⌠ᅵ â¥
ââŠtâ ââ¡â¥â¡â³ ââ€â¡ tâ¡râ ââ¥âŠâ§âŠâ£â¡ ââtrâŠâ¥â£â§â¡ ââ¥sâtâsââââ§â¡âŽââ¥ââŠâ¥sâstâ¡â¥tâ§ âs â¥âŠt stââ¥âârââ³ â âŠâ¥â§â¡ âsâ¡ ât â¢âŠr â¡âsâ¡ âŠâ¢ â¡â â£âŠsâtââŠâ¥â³ â â⊠â¥âŠt âŠâ¥âŠâ âŠâ¢ â stââ¥âârâ tâ¡râ ââ¥âŠâ§âŠâ£â¡ â¢âŠr tâ€â¡sâ¡ ââŠâ¥ââ¡â£tsâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Satisfiability and consistency in ᅵ L Notion Definition Description α âs sâtâsââââ§â¡ â â sââ†tâ€ât â ( α ) = ⶠα âs â¶â²sâtâsâââââ§â¡ α âs ââŠâ¥sâstâ¡â¥t â β sââ†tâ€ât α ᅵ⢠⥠α ââŠâ¡s â¥âŠt â£râŠââ¡ sâ tâ€â£â³ Ⲡβ â â ââ¡ â€âââ¡ â ( α ) < ⶠα âs ââ¥sâtâsââââ§â¡ α âs â¥âŠt â¶â²sâtâsââââ§â¡ α âs ââ¥ââŠâ¥sâstâ¡â¥t â β ââ¡ â€ââ⡠α ⢠⥠Ⲡβ α â£râŠââ¡s â¡ââ¡râ¡tâ€ââ¥â£ α âs strâŠâ¥â£â§â¡ ââ¥sâtâ³ â â ââ¡ â€âââ¡ â ( α ) = ⵠα âs ââ§âââ¡s â¢ââ§sâ¡ â β ââ¡ â€ââ⡠⢠⥠α âs strâŠâ¥â£â§â¡ ââ¥ââŠâ¥â³ Ⲡα â β α ââ â£â§ââ¡s â¡ââ¡râ¡tâ€ââ¥â£
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Satisfiability and consistency in ᅵ L Notion Definition Description α âs sâtâsââââ§â¡ â â sââ†tâ€ât â ( α ) = ⶠα âs â¶â²sâtâsâââââ§â¡ α âs ââŠâ¥sâstâ¡â¥t â β sââ†tâ€ât α ᅵ⢠⥠α ââŠâ¡s â¥âŠt â£râŠââ¡ sâ tâ€â£â³ Ⲡβ â â ââ¡ â€âââ¡ â ( α ) < ⶠα âs ââ¥sâtâsââââ§â¡ α âs â¥âŠt â¶â²sâtâsââââ§â¡ α âs ââ¥ââŠâ¥sâstâ¡â¥t â β ââ¡ â€ââ⡠α ⢠⥠Ⲡβ α â£râŠââ¡s â¡ââ¡râ¡tâ€ââ¥â£ α âs strâŠâ¥â£â§â¡ ââ¥sâtâ³ â â ââ¡ â€âââ¡ â ( α ) = ⵠα âs ââ§âââ¡s â¢ââ§sâ¡ â β ââ¡ â€ââ⡠⢠⥠α âs strâŠâ¥â£â§â¡ ââ¥ââŠâ¥â³ Ⲡα â β α ââ â£â§ââ¡s â¡ââ¡râ¡tâ€ââ¥â£ ââŠtâ ââ¡â¥â¡â³ ââ€â¡ tâ¡râ ââ¥âŠâ§âŠâ£â¡ ââtrâŠâ¥â£â§â¡ ââ¥sâtâsââââ§â¡âŽââ¥ââŠâ¥sâstâ¡â¥tâ§ âs â¥âŠt stââ¥âârââ³ â âŠâ¥â§â¡ âsâ¡ ât â¢âŠr â¡âsâ¡ âŠâ¢ â¡â â£âŠsâtââŠâ¥â³ â â⊠â¥âŠt âŠâ¥âŠâ âŠâ¢ â stââ¥âârâ tâ¡râ ââ¥âŠâ§âŠâ£â¡ â¢âŠr tâ€â¡sâ¡ ââŠâ¥ââ¡â£tsâ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Satisfiability and consistency in ᅵ L Notion Definition Description α âs sâtâsââââ§â¡ â â sââ†tâ€ât â ( α ) = ⶠα âs â¶â²sâtâsâââââ§â¡ α âs ââŠâ¥sâstâ¡â¥t â β sââ†tâ€ât α ᅵ⢠⥠α ââŠâ¡s â¥âŠt â£râŠââ¡ sâ tâ€â£â³ Ⲡβ â â ââ¡ â€âââ¡ â ( α ) < ⶠα âs ââ¥sâtâsââââ§â¡ α âs â¥âŠt â¶â²sâtâsââââ§â¡ α âs ââ¥ââŠâ¥sâstâ¡â¥t â β ââ¡ â€ââ⡠α ⢠⥠Ⲡβ α â£râŠââ¡s â¡ââ¡râ¡tâ€ââ¥â£ α âs strâŠâ¥â£â§â¡ ââ¥sâtâ³ â â ââ¡ â€âââ¡ â ( α ) = ⵠα âs ââ§âââ¡s â¢ââ§sâ¡ â β ââ¡ â€ââ⡠⢠⥠α âs strâŠâ¥â£â§â¡ ââ¥ââŠâ¥â³ Ⲡα â β α ââ â£â§ââ¡s â¡ââ¡râ¡tâ€ââ¥â£ âqâââââ§â¡â¥t â⥠ââ§âssââââ§ â§âŠâ£ââ ââ¡ tâ€â¡ Prââ¥âââ£â§â¡ âŠâ¢ âââââ§â¡â¥ââ¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Satisfiability and consistency in ᅵ L Notion Definition Description α âs sâtâsââââ§â¡ â â sââ†tâ€ât â ( α ) = ⶠα âs â¶â²sâtâsâââââ§â¡ α âs ââŠâ¥sâstâ¡â¥t â β sââ†tâ€ât α ᅵ⢠⥠α ââŠâ¡s â¥âŠt â£râŠââ¡ sâ tâ€â£â³ Ⲡβ â â ââ¡ â€âââ¡ â ( α ) < ⶠα âs ââ¥sâtâsââââ§â¡ α âs â¥âŠt â¶â²sâtâsââââ§â¡ α âs ââ¥ââŠâ¥sâstâ¡â¥t â β ââ¡ â€ââ⡠α ⢠⥠Ⲡβ α â£râŠââ¡s â¡ââ¡râ¡tâ€ââ¥â£ α âs strâŠâ¥â£â§â¡ ââ¥sâtâ³ â â ââ¡ â€âââ¡ â ( α ) = ⵠα âs ââ§âââ¡s â¢ââ§sâ¡ â β ââ¡ â€ââ⡠⢠⥠α âs strâŠâ¥â£â§â¡ ââ¥ââŠâ¥â³ Ⲡα â β α ââ â£â§ââ¡s â¡ââ¡râ¡tâ€ââ¥â£ âqâââââ§â¡â¥t â⥠ââ§âssââââ§ â§âŠâ£ââ ââ¡ tâ€â¡ ââ¡âââtââŠâ¥ ââ€â¡âŠrâ¡â â³
ââ€â¡ âârâ¡âtââŠâ¥ â¢âââ§s â⥠⥠â²â¿ â± âât ⳠⲠ⥠Ⲡ⥠ââŠr ââ¥â¡ ââŠrâ Ⱡ⥠ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⥠ⶠsââ†tâ€ât ⥠Ⲡ⥠Ⲡ⥠âââŠtâtââŠâ¥â¿ ⮠⥠tââ â¡s â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Deduction Theorem for CL ââŠr ââ¥â¡ α, β â ââŠrâ Ⱡα ⢠β ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⢠α â β .
ââŠr ââ¥â¡ ââŠrâ Ⱡ⥠ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⥠ⶠsââ†tâ€ât Ⲡ⥠Ⲡ⥠⥠âââŠtâtââŠâ¥â¿ ⮠⥠tââ â¡s â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Deduction Theorem for CL ââŠr ââ¥â¡ α, β â ââŠrâ Ⱡα ⢠β ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⢠α â β . ââ€â¡ âârâ¡âtââŠâ¥ â â¢âââ§s â⥠⥠â²â¿ α ⢠⥠Ⲡα â α â± âât ᅵ⢠⥠Ⲡα â α â α â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Deduction Theorem for CL ââŠr ââ¥â¡ α, β â ââŠrâ Ⱡα ⢠β ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± ⢠α â β . ââ€â¡ âârâ¡âtââŠâ¥ â â¢âââ§s â⥠⥠â²â¿ α ⢠⥠Ⲡα â α â± âât ᅵ⢠⥠Ⲡα â α â α â³ Local Deduction Theorem for ᅵ L ââŠr ââ¥â¡ α, β â ââŠrâ ⱠⲠα ⥠â β . α ⢠⥠Ⲡβ ââ¢â± ââ¥â âŠâ¥â§â¡ ââ¢â± â ⥠ᅵ â¶ sââ†tâ€ât ⢠⥠âââŠtâtââŠâ¥â¿ α ⥠:= α â · · · â α . ⮠ᅵ ᅵᅵ ᅵ ⥠tââ â¡s
â²â¡ âââ¥â¥âŠt tâ€ââ¥âŠ âŠâ¢ âs ââ¢râŠâ tâ€â¡ âssââ â£tââŠâ¥ âŠâ¢ â± tâ€â¡râ¡ â¢âŠâ§â§âŠâs â§â± ââ³â¡â³ âs â³ ââ€â¡ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥ âs â¥âŠt â ââŠâ¥ââtââŠâ¥ââ§â³ ââ€â¡ âârâ¡â£â¡ââ¥â® ââstââ¥âtââŠâ¥ ââ¡tââ¡â¡â¥ âssâ¡rtââ¥â£ â â£râŠâ£âŠsâtââŠâ¥ ââ¥â ââŠâ¥tâ¡â â£â§âtââ¥â£ tâ€ât â£râŠâ£âŠsâtââŠâ¥ ââ¡ââŠâ â¡s â¡ssâ¡â¥tâââ§â¿ â⥠ââ§âssââââ§ â§âŠâ£âââ± ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â°âââââ§â¡â¥ââ¡ â ââŠâ¡ tâ€ât ââstââ¥âtââŠâ¥ â¢âr â§â¡ss ââ â£âŠrtââ¥tâ³ âââ¢â³ tâ€â¡ âârsâŠââ⥠âââ¡â¥tââââtââŠâ¥ âŠâ¢ tâ€â¡ â â¡ââ¥ââ¥â£ âŠâ¢ â â£râŠâ£âŠsâtââŠâ¥ âât†âts trât†ââŠâ¥ââtââŠâ¥sâ¿ tâ€âs â¢âââ§s ââââ§â¡ â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³â® âs â ââŠâ¥sâ¡qââ¡â¥ââ¡ âŠâ¢ tâ€â¡ tâ⊠â£râ¡âââŠâs âtâ¡â sâ± ââ€ââ§â¡ ât âs â¡âsâ¡ t⊠sââ¡ ââ€ât tâ€â¡ âssâ¡rtââŠâ¥ â â¡ââ¥sâ± ât âs â¢âr â€ârââ¡r t⊠sââ¡ ââ€ât tâ€â¡ â£â§ââ⥠â£râŠâ£âŠsâtââŠâ¥ â â¡ââ¥sâ³ â ⥠âŠtâ€â¡r ââŠrâsâ± tâ€â¡ ââ¥tâ¡â¥ââ¡â â â¡ââ¥ââ¥â£ âŠâ¢ tâ€â¡ ââŠâ¥â¥â¡âtâââ¡ âs ââ¥ââ§â¡ârâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ â¢âââ§ârâ¡ âŠâ¢ tâ€â¡ ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ âs âŠâ¢ â£ârââ âŠââ¥t ââŠâ¥ââ¡â£tâââ§ ââ â£âŠrtââ¥ââ¡â¿
ââ€â¡ âârâ¡â£â¡ââ¥â® ââstââ¥âtââŠâ¥ ââ¡tââ¡â¡â¥ âssâ¡rtââ¥â£ â â£râŠâ£âŠsâtââŠâ¥ ââ¥â ââŠâ¥tâ¡â â£â§âtââ¥â£ tâ€ât â£râŠâ£âŠsâtââŠâ¥ ââ¡ââŠâ â¡s â¡ssâ¡â¥tâââ§â¿ â⥠ââ§âssââââ§ â§âŠâ£âââ± ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â°âââââ§â¡â¥ââ¡ â ââŠâ¡ tâ€ât ââstââ¥âtââŠâ¥ â¢âr â§â¡ss ââ â£âŠrtââ¥tâ³ âââ¢â³ tâ€â¡ âârsâŠââ⥠âââ¡â¥tââââtââŠâ¥ âŠâ¢ tâ€â¡ â â¡ââ¥ââ¥â£ âŠâ¢ â â£râŠâ£âŠsâtââŠâ¥ âât†âts trât†ââŠâ¥ââtââŠâ¥sâ¿ tâ€âs â¢âââ§s ââââ§â¡ â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³â® âs â ââŠâ¥sâ¡qââ¡â¥ââ¡ âŠâ¢ tâ€â¡ tâ⊠â£râ¡âââŠâs âtâ¡â sâ± ââ€ââ§â¡ ât âs â¡âsâ¡ t⊠sââ¡ ââ€ât tâ€â¡ âssâ¡rtââŠâ¥ â â¡ââ¥sâ± ât âs â¢âr â€ârââ¡r t⊠sââ¡ ââ€ât tâ€â¡ â£â§ââ⥠â£râŠâ£âŠsâtââŠâ¥ â â¡ââ¥sâ³ â ⥠âŠtâ€â¡r ââŠrâsâ± tâ€â¡ ââ¥tâ¡â¥ââ¡â â â¡ââ¥ââ¥â£ âŠâ¢ tâ€â¡ ââŠâ¥â¥â¡âtâââ¡ âs ââ¥ââ§â¡ârâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ â¢âââ§ârâ¡ âŠâ¢ tâ€â¡ ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ âs âŠâ¢ â£ârââ âŠââ¥t ââŠâ¥ââ¡â£tâââ§ ââ â£âŠrtââ¥ââ¡â¿ 1 â²â¡ âââ¥â¥âŠt tâ€ââ¥âŠ âŠâ¢ α â β âs ââ¢râŠâ tâ€â¡ âssââ â£tââŠâ¥ âŠâ¢ α â± tâ€â¡râ¡ â¢âŠâ§â§âŠâs β â§â± ââ³â¡â³ âs α ⢠β â³ ââ€â¡ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥ âs â¥âŠt â ââŠâ¥ââtââŠâ¥ââ§â³
âs â ââŠâ¥sâ¡qââ¡â¥ââ¡ âŠâ¢ tâ€â¡ tâ⊠â£râ¡âââŠâs âtâ¡â sâ± ââ€ââ§â¡ ât âs â¡âsâ¡ t⊠sââ¡ ââ€ât tâ€â¡ âssâ¡rtââŠâ¥ â â¡ââ¥sâ± ât âs â¢âr â€ârââ¡r t⊠sââ¡ ââ€ât tâ€â¡ â£â§ââ⥠â£râŠâ£âŠsâtââŠâ¥ â â¡ââ¥sâ³ â ⥠âŠtâ€â¡r ââŠrâsâ± tâ€â¡ ââ¥tâ¡â¥ââ¡â â â¡ââ¥ââ¥â£ âŠâ¢ tâ€â¡ ââŠâ¥â¥â¡âtâââ¡ âs ââ¥ââ§â¡ârâ³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ â¢âââ§ârâ¡ âŠâ¢ tâ€â¡ ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ âs âŠâ¢ â£ârââ âŠââ¥t ââŠâ¥ââ¡â£tâââ§ ââ â£âŠrtââ¥ââ¡â¿ 1 â²â¡ âââ¥â¥âŠt tâ€ââ¥âŠ âŠâ¢ α â β âs ââ¢râŠâ tâ€â¡ âssââ â£tââŠâ¥ âŠâ¢ α â± tâ€â¡râ¡ â¢âŠâ§â§âŠâs β â§â± ââ³â¡â³ âs α ⢠β â³ ââ€â¡ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥ âs â¥âŠt â ââŠâ¥ââtââŠâ¥ââ§â³ 2 ââ€â¡ âârâ¡â£â¡ââ¥â® ââstââ¥âtââŠâ¥ ââ¡tââ¡â¡â¥ âssâ¡rtââ¥â£ â â£râŠâ£âŠsâtââŠâ¥ ââ¥â ââŠâ¥tâ¡â â£â§âtââ¥â£ tâ€ât â£râŠâ£âŠsâtââŠâ¥ ââ¡ââŠâ â¡s â¡ssâ¡â¥tâââ§â¿ â⥠ââ§âssââââ§ â§âŠâ£âââ± ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â°âââââ§â¡â¥ââ¡ â ââŠâ¡ tâ€ât ââstââ¥âtââŠâ¥ â¢âr â§â¡ss ââ â£âŠrtââ¥tâ³ âââ¢â³ tâ€â¡ âârsâŠââ⥠âââ¡â¥tââââtââŠâ¥ âŠâ¢ tâ€â¡ â â¡ââ¥ââ¥â£ âŠâ¢ â â£râŠâ£âŠsâtââŠâ¥ α âât†âts trât†ââŠâ¥ââtââŠâ¥sâ¿ tâ€âs â¢âââ§s ââââ§â¡ â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³â®
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ â¢âââ§ârâ¡ âŠâ¢ tâ€â¡ ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ âs âŠâ¢ â£ârââ âŠââ¥t ââŠâ¥ââ¡â£tâââ§ ââ â£âŠrtââ¥ââ¡â¿ 1 â²â¡ âââ¥â¥âŠt tâ€ââ¥âŠ âŠâ¢ α â β âs ââ¢râŠâ tâ€â¡ âssââ â£tââŠâ¥ âŠâ¢ α â± tâ€â¡râ¡ â¢âŠâ§â§âŠâs β â§â± ââ³â¡â³ âs α ⢠β â³ ââ€â¡ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥ âs â¥âŠt â ââŠâ¥ââtââŠâ¥ââ§â³ 2 ââ€â¡ âârâ¡â£â¡ââ¥â® ââstââ¥âtââŠâ¥ ââ¡tââ¡â¡â¥ âssâ¡rtââ¥â£ â â£râŠâ£âŠsâtââŠâ¥ ââ¥â ââŠâ¥tâ¡â â£â§âtââ¥â£ tâ€ât â£râŠâ£âŠsâtââŠâ¥ ââ¡ââŠâ â¡s â¡ssâ¡â¥tâââ§â¿ â⥠ââ§âssââââ§ â§âŠâ£âââ± ââ¡âââtââŠâ¥ tâ€â¡âŠrâ¡â â°âââââ§â¡â¥ââ¡ â ââŠâ¡ tâ€ât ââstââ¥âtââŠâ¥ â¢âr â§â¡ss ââ â£âŠrtââ¥tâ³ âââ¢â³ tâ€â¡ âârsâŠââ⥠âââ¡â¥tââââtââŠâ¥ âŠâ¢ tâ€â¡ â â¡ââ¥ââ¥â£ âŠâ¢ â â£râŠâ£âŠsâtââŠâ¥ α âât†âts trât†ââŠâ¥ââtââŠâ¥sâ¿ tâ€âs â¢âââ§s ââââ§â¡ â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³â® 3 âs â ââŠâ¥sâ¡qââ¡â¥ââ¡ âŠâ¢ tâ€â¡ tâ⊠â£râ¡âââŠâs âtâ¡â sâ± ââ€ââ§â¡ ât âs â¡âsâ¡ t⊠sââ¡ ââ€ât tâ€â¡ âssâ¡rtââŠâ¥ ⢠α â β â â¡ââ¥sâ± ât âs â¢âr â€ârââ¡r t⊠sââ¡ ââ€ât tâ€â¡ â£â§ââ⥠â£râŠâ£âŠsâtââŠâ¥ α â β â â¡ââ¥sâ³ â ⥠âŠtâ€â¡r ââŠrâsâ± tâ€â¡ ââ¥tâ¡â¥ââ¡â â â¡ââ¥ââ¥â£ âŠâ¢ tâ€â¡ ââŠâ¥â¥â¡âtâââ¡ â âs ââ¥ââ§â¡ârâ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Symbol Name Classically read †ââ¡rââ ââ§âââ¡s trâ⡠⥠â¢ââ§sââ ââ§âââ¡s â¢ââ§sâ¡ âš ââsâ¥ââ¥âtââŠâ¥ â â¥ââ§âsâââ¡ âŠr â ââ¡â§ â® â§ ââŠâ¥â¥ââ¥âtââŠâ¥ ââ¥â ââ â£â§âââtââŠâ¥ â â¢â³ â³ â³ tâ€â¡â¥â³ â³ â³ â ¬ â¥â¡â£âtââŠâ¥ ââŠt Notation Definition Formal Semantics †¬ ⥠â ( †) = ⶠα ⚠β ( α â β ) â β â ( α ⚠β ) = â ââ { â ( α ) , â ( β ) } â ( α ⧠β ) = â â⥠{ â ( α ) , â ( β ) } α ⧠β ¬ ( ¬ α ⚠¬ β ) α â β ( α â β ) â§ ( β â α ) â ( α â β ) = â¶ â | â ( α ) â â ( β ) | α â β ¬ α â β â ( α â β ) = â â⥠{ â ( α ) + â ( β ) , â¶ } α â β â ( α â β ) = â ââ { â ( α ) â â ( β ) , âµ } ¬ ( α â β ) Table: ââŠâ¥â¥â¡âtâââ¡s â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£âââ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ârâtâ€â²â¢ââ¥âtââŠâ¥ âŠâ¢ ⥠â²ââŠâsââ¡âââ⢠ââ â£â§âââtââŠâ¥â³ â ( α â β ) = â â⥠{ â¶ , â¶ â ( â ( α ) â â ( β )) } ᅵ â¶ â⢠â ( α ) ᅵ â ( β ) â ( α â β ) = â¶ â ( â ( α ) â â ( β )) âŠtâ€â¡rââsâ¡â³
âââ¡ ââŠrâ ârâ¡ â§âŠâ£ââââ§â§â¡ â¡qâââââ§â¡â¥t â⢠Ⳡâ²rât⡠Ⳡ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ MV-algebras ââ³ ââ³ ââ€ââ¥â£ â⥠ââŠâ â¡â± â¶âŸâ»âŸâ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ MV-algebras ââ³ ââ³ ââ€ââ¥â£ â⥠ââŠâ â¡â± â¶âŸâ»âŸâ³ Lindenbaumâs Equivalence Relation ââ⡠α, β â ââŠrâ ârâ¡ â§âŠâ£ââââ§â§â¡ â¡qâââââ§â¡â¥t â⢠⢠α â β â³ â²rât⡠α ⡠β â³
ââŠrâ ââ€â¡ ââ§â£â¡ârâââ strââtârâ¡ âµ âs â⥠âŒâ±â²ââ§â£â¡ârââ³ âµâŒâ±â²ââ§â£â¡ârâ⬠âs sâ€âŠrt â¢âŠr âµâŒââ¥â¡â²â±ââ§ââ¡â ââ§â£â¡ârâ⬠Ⱡââ¢âŠr â§ââ⊠âŠâ¢ â ââ¡ttâ¡r â¥ââ â¡â³â§ âââ³ââ³ ââ€ââ¥â£â± â¶âŸâœâ»â® â³ âŒâ±â²ââ§â£â¡ârâs ⿠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â ââŠâŠâ§â¡â⥠ââ§â£â¡ârâs â¿ ââ§âssââââ§ â§âŠâ£ââ ââstrââtâ§â¡â¿ ⌠ⵠâs â⥠âŒâ±â²ââ§â£â¡ârâ â⢠⌠ⵠâs â ââŠâ â âtâtâââ¡ â âŠâ¥âŠâââ± â â± â¶ âµ âs ââsâŠrâââ¥â£ â¢âŠr â â â â¶ â¶â®â± ââ¥ââ± ââ€ârââtâ¡râstââââ§â§â¡â± ââ¯â® â â¡ â¡ â¡ â â â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â⥠tâ€â¡ qââŠtââ¡â¥t sâ¡t ââŠrâ â¡ â± tâ€â¡ ââŠâ¥â¥â¡âtâââ¡s ââ¥ââââ¡ âŠâ£â¡râtââŠâ¥sâ¿ âµ := [ ⥠] ⡠¬ [ α ] â¡ := [ ¬ α ] â¡ [ α ] â¡ â [ β ] â¡ := [ α â β ] â¡
âµâŒâ±â²ââ§â£â¡ârâ⬠âs sâ€âŠrt â¢âŠr âµâŒââ¥â¡â²â±ââ§ââ¡â ââ§â£â¡ârâ⬠Ⱡââ¢âŠr â§ââ⊠âŠâ¢ â ââ¡ttâ¡r â¥ââ â¡â³â§ âââ³ââ³ ââ€ââ¥â£â± â¶âŸâœâ»â® â³ âŒâ±â²ââ§â£â¡ârâs ⿠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â ââŠâŠâ§â¡â⥠ââ§â£â¡ârâs â¿ ââ§âssââââ§ â§âŠâ£ââ ââstrââtâ§â¡â¿ ⌠ⵠâs â⥠âŒâ±â²ââ§â£â¡ârâ â⢠⌠ⵠâs â ââŠâ â âtâtâââ¡ â âŠâ¥âŠâââ± â â± â¶ âµ âs ââsâŠrâââ¥â£ â¢âŠr â â â â¶ â¶â®â± ââ¥ââ± ââ€ârââtâ¡râstââââ§â§â¡â± ââ¯â® â â¡ â¡ â¡ â â â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â⥠tâ€â¡ qââŠtââ¡â¥t sâ¡t ââŠrâ â¡ â± tâ€â¡ ââŠâ¥â¥â¡âtâââ¡s ââ¥ââââ¡ âŠâ£â¡râtââŠâ¥sâ¿ âµ := [ ⥠] ⡠¬ [ α ] â¡ := [ ¬ α ] â¡ [ α ] â¡ â [ β ] â¡ := [ α â β ] â¡ ââ€â¡ ââ§â£â¡ârâââ strââtârâ¡ ( ââŠrâ â¡ , â , ¬ , âµ ) âs â⥠âŒâ±â²ââ§â£â¡ârââ³
ââstrââtâ§â¡â¿ ⌠ⵠâs â⥠âŒâ±â²ââ§â£â¡ârâ â⢠⌠ⵠâs â ââŠâ â âtâtâââ¡ â âŠâ¥âŠâââ± â â± â¶ âµ âs ââsâŠrâââ¥â£ â¢âŠr â â â â¶ â¶â®â± ââ¥ââ± ââ€ârââtâ¡râstââââ§â§â¡â± ââ¯â® â â¡ â¡ â¡ â â ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â⥠tâ€â¡ qââŠtââ¡â¥t sâ¡t ââŠrâ â¡ â± tâ€â¡ ââŠâ¥â¥â¡âtâââ¡s ââ¥ââââ¡ âŠâ£â¡râtââŠâ¥sâ¿ âµ := [ ⥠] ⡠¬ [ α ] â¡ := [ ¬ α ] â¡ [ α ] â¡ â [ β ] â¡ := [ α â β ] â¡ ââ€â¡ ââ§â£â¡ârâââ strââtârâ¡ ( ââŠrâ â¡ , â , ¬ , âµ ) âs â⥠âŒâ±â²ââ§â£â¡ârââ³ âµâŒâ±â²ââ§â£â¡ârâ⬠âs sâ€âŠrt â¢âŠr âµâŒââ¥â¡â²â±ââ§ââ¡â ââ§â£â¡ârâ⬠Ⱡââ¢âŠr â§ââ⊠âŠâ¢ â ââ¡ttâ¡r â¥ââ â¡â³â§ âââ³ââ³ ââ€ââ¥â£â± â¶âŸâœâ»â® â³ âŒâ±â²ââ§â£â¡ârâs ⿠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â ââŠâŠâ§â¡â⥠ââ§â£â¡ârâs â¿ ââ§âssââââ§ â§âŠâ£ââ
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â⥠tâ€â¡ qââŠtââ¡â¥t sâ¡t ââŠrâ â¡ â± tâ€â¡ ââŠâ¥â¥â¡âtâââ¡s ââ¥ââââ¡ âŠâ£â¡râtââŠâ¥sâ¿ âµ := [ ⥠] ⡠¬ [ α ] â¡ := [ ¬ α ] â¡ [ α ] â¡ â [ β ] â¡ := [ α â β ] â¡ ââ€â¡ ââ§â£â¡ârâââ strââtârâ¡ ( ââŠrâ â¡ , â , ¬ , âµ ) âs â⥠âŒâ±â²ââ§â£â¡ârââ³ âµâŒâ±â²ââ§â£â¡ârâ⬠âs sâ€âŠrt â¢âŠr âµâŒââ¥â¡â²â±ââ§ââ¡â ââ§â£â¡ârâ⬠Ⱡââ¢âŠr â§ââ⊠âŠâ¢ â ââ¡ttâ¡r â¥ââ â¡â³â§ âââ³ââ³ ââ€ââ¥â£â± â¶âŸâœâ»â® â³ âŒâ±â²ââ§â£â¡ârâs ⿠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ â ââŠâŠâ§â¡â⥠ââ§â£â¡ârâs â¿ ââ§âssââââ§ â§âŠâ£ââ ââstrââtâ§â¡â¿ ( ⌠, â , ¬ , âµ ) âs â⥠âŒâ±â²ââ§â£â¡ârâ â⢠( ⌠, â , âµ ) âs â ââŠâ â âtâtâââ¡ â âŠâ¥âŠââⱠ¬¬ â = â â± â¶ := ¬ âµ âs ââsâŠrâââ¥â£ â¢âŠr â â â â â¶ = â¶â®â± ââ¥ââ± ââ€ârââtâ¡râstââââ§â§â¡â± ¬ ( ¬ â â â¡ ) â â¡ = ¬ ( ¬ â¡ â â ) â â ââ¯â®
ââ€âsâ± tâ€â¡ ââ€ârââtâ¡râstââ â§ââ ââ¯â® stâtâ¡s tâ€ât â¥âŠââ¥s ââŠâ â âtâ¡â¿ â â¡ â¡ â âŒâ¡â¡ts ârâ¡ ââ¡ââ¥â¡â ââ¡ tâ€â¡ ââ¡ âŒâŠrâ£â⥠ââŠâ¥ââtââŠâ¥ â â¡ â â¡ ââŠâŠâ§â¡â⥠ââ§â£â¡ârâsââ ââ¡â â£âŠtâ¡â¥t âŒâ±â²ââ§â£â¡ârâsâ¿ â â â â³ âqâââââ§â¡â¥tâ§â¡â¿ âŒâ±â²ââ§â£â¡ârâs tâ€ât sâtâsâ¢â¡ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â§ââ â â â¶ â³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ â€âs â⥠ââ¥ââ¡râ§â¡ââ¥â£ ââstrâââtâââ¡ â§âttâââ¡ ââŠââ¥ââ¡â ââ¡â§âŠâ ââ¡ âµ ââ¥â âââŠââ¡ ââ¡ â¶â³ ââŠââ¥s ârâ¡ â£âââ¡â¥ ââ¡ â âš â¡ := ¬ ( ¬ â â â¡ ) â â¡
âŒâ¡â¡ts ârâ¡ ââ¡ââ¥â¡â ââ¡ tâ€â¡ ââ¡ âŒâŠrâ£â⥠ââŠâ¥ââtââŠâ¥ â â¡ â â¡ ââŠâŠâ§â¡â⥠ââ§â£â¡ârâsââ ââ¡â â£âŠtâ¡â¥t âŒâ±â²ââ§â£â¡ârâsâ¿ â â â â³ âqâââââ§â¡â¥tâ§â¡â¿ âŒâ±â²ââ§â£â¡ârâs tâ€ât sâtâsâ¢â¡ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â§ââ â â â¶ â³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ â€âs â⥠ââ¥ââ¡râ§â¡ââ¥â£ ââstrâââtâââ¡ â§âttâââ¡ ââŠââ¥ââ¡â ââ¡â§âŠâ ââ¡ âµ ââ¥â âââŠââ¡ ââ¡ â¶â³ ââŠââ¥s ârâ¡ â£âââ¡â¥ ââ¡ â âš â¡ := ¬ ( ¬ â â â¡ ) â â¡ ââ€âsâ± tâ€â¡ ââ€ârââtâ¡râstââ â§ââ ââ¯â® stâtâ¡s tâ€ât â¥âŠââ¥s ââŠâ â âtâ¡â¿ â âš â¡ = â¡ âš â
ââŠâŠâ§â¡â⥠ââ§â£â¡ârâsââ ââ¡â â£âŠtâ¡â¥t âŒâ±â²ââ§â£â¡ârâsâ¿ â â â â³ âqâââââ§â¡â¥tâ§â¡â¿ âŒâ±â²ââ§â£â¡ârâs tâ€ât sâtâsâ¢â¡ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â§ââ â â ⶠⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ â€âs â⥠ââ¥ââ¡râ§â¡ââ¥â£ ââstrâââtâââ¡ â§âttâââ¡ ââŠââ¥ââ¡â ââ¡â§âŠâ ââ¡ âµ ââ¥â âââŠââ¡ ââ¡ â¶â³ ââŠââ¥s ârâ¡ â£âââ¡â¥ ââ¡ â âš â¡ := ¬ ( ¬ â â â¡ ) â â¡ ââ€âsâ± tâ€â¡ ââ€ârââtâ¡râstââ â§ââ ââ¯â® stâtâ¡s tâ€ât â¥âŠââ¥s ââŠâ â âtâ¡â¿ â âš â¡ = â¡ âš â âŒâ¡â¡ts ârâ¡ ââ¡ââ¥â¡â ââ¡ tâ€â¡ ââ¡ âŒâŠrâ£â⥠ââŠâ¥ââtââŠâ¥ â â§ â¡ := ¬ ( ¬ â ⚠¬ â¡ )
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ â€âs â⥠ââ¥ââ¡râ§â¡ââ¥â£ ââstrâââtâââ¡ â§âttâââ¡ ââŠââ¥ââ¡â ââ¡â§âŠâ ââ¡ âµ ââ¥â âââŠââ¡ ââ¡ â¶â³ ââŠââ¥s ârâ¡ â£âââ¡â¥ ââ¡ â âš â¡ := ¬ ( ¬ â â â¡ ) â â¡ ââ€âsâ± tâ€â¡ ââ€ârââtâ¡râstââ â§ââ ââ¯â® stâtâ¡s tâ€ât â¥âŠââ¥s ââŠâ â âtâ¡â¿ â âš â¡ = â¡ âš â âŒâ¡â¡ts ârâ¡ ââ¡ââ¥â¡â ââ¡ tâ€â¡ ââ¡ âŒâŠrâ£â⥠ââŠâ¥ââtââŠâ¥ â â§ â¡ := ¬ ( ¬ â ⚠¬ â¡ ) ââŠâŠâ§â¡â⥠ââ§â£â¡ârâsââ ââ¡â â£âŠtâ¡â¥t âŒâ±â²ââ§â£â¡ârâsâ¿ â â â = â â³ âqâââââ§â¡â¥tâ§â¡â¿ âŒâ±â²ââ§â£â¡ârâs tâ€ât sâtâsâ¢â¡ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â§ââ â ⚠¬ â = â¶ â³
ââ€â¡ âârââ¡tâ¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâs âs â£â¡â¥â¡râtâ¡â ââ¡ âµ â¶ â³ ââ³ââ³ ââ€ââ¥â£â± ârââ¥sâ³ âŠâ¢ tâ€â¡ ââŒâ â± â¶âŸâºâŸâ³ ââ€âs â â¡ââ¥sâ¿ ââ€â¡ ââ§âss âŠâ¢ âŒâ±â²ââ§â£â¡ârâs ââŠââ¥ââââ¡s âât†ââP ⵠⶠ†ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ ââ⥠ââ¡ râ¡â£râ¡sâ¡â¥tâ¡â âs â â€âŠâ âŠâ âŠrâ£â€ââ ââ ââ£â¡ âŠâ¢ â sââââ§â£â¡ârâ âŠâ¢ â â£râŠââât âŠâ¢ ââŠâ£ââ¡s âŠâ¢ âµ â¶ â³ ârâ¿ ââ€â¡ â¡qââtââŠâ¥s ââ⥠tâ€â¡ â§ââ¥â£âââ£â¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâsâ® tâ€ât â€âŠâ§â â⥠ââ§â§ âŒâ±â²ââ§â£â¡ârâs ârâ¡ â¡â ââtâ§â¡ tâ€âŠsâ¡ tâ€ât â€âŠâ§â â⥠ⵠⶠⳠârâ¿ ââ¥â¡ ââŠrâ tâ€ât â€âs â ââŠââ¥tâ¡râ²â âŠââ¡â§ â⥠sâŠâ â¡ âŒâ±â²ââ§â£â¡ârââ± ââ§râ¡âââ¡ â€âs â ââŠââ¥tâ¡râ²â âŠââ¡â§ â⥠ⵠⶠⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ ââ¥tâ¡râââ§ [ âµ , â¶ ] â R ââ⥠ââ¡ â âââ¡ ââ¥t⊠â⥠âŒâ±â²ââ§â£â¡ârâ âât†â¥â¡âtrââ§ â¡â§â¡â â¡â¥t âµ ââ¡ ââ¡ââ¥ââ¥â£ â â â¡ := â â⥠{ â + â¡ , â¶ } , ¬ â := â¶ â â . ââ€â¡ ââ¥ââ¡râ§â¡ââ¥â£ â§âttâââ¡ âŠrââ¡r âŠâ¢ tâ€âs âŒâ±â²ââ§â£â¡ârâ ââŠââ¥ââââ¡s âât†tâ€â¡ â¥âtârââ§ âŠrââ¡r âŠâ¢ [ âµ , â¶ ] â³
ââ€âs â â¡ââ¥sâ¿ ââ€â¡ ââ§âss âŠâ¢ âŒâ±â²ââ§â£â¡ârâs ââŠââ¥ââââ¡s âât†ââP ⵠⶠ†ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ ââ⥠ââ¡ râ¡â£râ¡sâ¡â¥tâ¡â âs â â€âŠâ âŠâ âŠrâ£â€ââ ââ ââ£â¡ âŠâ¢ â sââââ§â£â¡ârâ âŠâ¢ â â£râŠââât âŠâ¢ ââŠâ£ââ¡s âŠâ¢ âµ â¶ â³ ârâ¿ ââ€â¡ â¡qââtââŠâ¥s ââ⥠tâ€â¡ â§ââ¥â£âââ£â¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâsâ® tâ€ât â€âŠâ§â â⥠ââ§â§ âŒâ±â²ââ§â£â¡ârâs ârâ¡ â¡â ââtâ§â¡ tâ€âŠsâ¡ tâ€ât â€âŠâ§â â⥠ⵠⶠⳠârâ¿ ââ¥â¡ ââŠrâ tâ€ât â€âs â ââŠââ¥tâ¡râ²â âŠââ¡â§ â⥠sâŠâ â¡ âŒâ±â²ââ§â£â¡ârââ± ââ§râ¡âââ¡ â€âs â ââŠââ¥tâ¡râ²â âŠââ¡â§ â⥠ⵠⶠⳠâ²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ ââ¥tâ¡râââ§ [ âµ , â¶ ] â R ââ⥠ââ¡ â âââ¡ ââ¥t⊠â⥠âŒâ±â²ââ§â£â¡ârâ âât†â¥â¡âtrââ§ â¡â§â¡â â¡â¥t âµ ââ¡ ââ¡ââ¥ââ¥â£ â â â¡ := â â⥠{ â + â¡ , â¶ } , ¬ â := â¶ â â . ââ€â¡ ââ¥ââ¡râ§â¡ââ¥â£ â§âttâââ¡ âŠrââ¡r âŠâ¢ tâ€âs âŒâ±â²ââ§â£â¡ârâ ââŠââ¥ââââ¡s âât†tâ€â¡ â¥âtârââ§ âŠrââ¡r âŠâ¢ [ âµ , â¶ ] â³ Theorem (Changâs completeness theorem, 1959) ââ€â¡ âârââ¡tâ¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâs âs â£â¡â¥â¡râtâ¡â ââ¡ [ âµ , â¶ ] â³ ââ³ââ³ ââ€ââ¥â£â± ârââ¥sâ³ âŠâ¢ tâ€â¡ ââŒâ â± â¶âŸâºâŸâ³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ ââ¥tâ¡râââ§ [ âµ , â¶ ] â R ââ⥠ââ¡ â âââ¡ ââ¥t⊠â⥠âŒâ±â²ââ§â£â¡ârâ âât†â¥â¡âtrââ§ â¡â§â¡â â¡â¥t âµ ââ¡ ââ¡ââ¥ââ¥â£ â â â¡ := â â⥠{ â + â¡ , â¶ } , ¬ â := â¶ â â . ââ€â¡ ââ¥ââ¡râ§â¡ââ¥â£ â§âttâââ¡ âŠrââ¡r âŠâ¢ tâ€âs âŒâ±â²ââ§â£â¡ârâ ââŠââ¥ââââ¡s âât†tâ€â¡ â¥âtârââ§ âŠrââ¡r âŠâ¢ [ âµ , â¶ ] â³ Theorem (Changâs completeness theorem, 1959) ââ€â¡ âârââ¡tâ¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâs âs â£â¡â¥â¡râtâ¡â ââ¡ [ âµ , â¶ ] â³ ââ³ââ³ ââ€ââ¥â£â± ârââ¥sâ³ âŠâ¢ tâ€â¡ ââŒâ â± â¶âŸâºâŸâ³ ââ€âs â â¡ââ¥sâ¿ ââ€â¡ ââ§âss âŠâ¢ âŒâ±â²ââ§â£â¡ârâs ââŠââ¥ââââ¡s âât†ââP ([ âµ , â¶ ]) †ââ¥â¡ âŒâ±â²ââ§â£â¡ârâ ââ⥠ââ¡ râ¡â£râ¡sâ¡â¥tâ¡â âs â â€âŠâ âŠâ âŠrâ£â€ââ ââ ââ£â¡ âŠâ¢ â sââââ§â£â¡ârâ âŠâ¢ â â£râŠââât âŠâ¢ ââŠâ£ââ¡s âŠâ¢ [ âµ , â¶ ] â³ ârâ¿ ââ€â¡ â¡qââtââŠâ¥s ââ⥠tâ€â¡ â§ââ¥â£âââ£â¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâsâ® tâ€ât â€âŠâ§â â⥠ââ§â§ âŒâ±â²ââ§â£â¡ârâs ârâ¡ â¡â ââtâ§â¡ tâ€âŠsâ¡ tâ€ât â€âŠâ§â â⥠[ âµ , â¶ ] â³ ârâ¿ ââ¥â¡ α â ââŠrâ tâ€ât â€âs â ââŠââ¥tâ¡râ²â âŠââ¡â§ â⥠sâŠâ â¡ âŒâ±â²ââ§â£â¡ârââ± ââ§râ¡âââ¡ â€âs â ââŠââ¥tâ¡râ²â âŠââ¡â§ â⥠[ âµ , â¶ ] â³
ââ¡râ¡ âs â â·â²âârââââ§â¡ â£â¡â¥â¡rââ§âsâtââŠâ¥ âŠâ¢ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr tâ¡râ â¿ â â â¡ â¡ â¶ â â® âµ â¶ â· â± ââ€â¡ â¡âââ§ââtââŠâ¥s âŠâ¢ â ââ¥â â¡ ââ¥t⊠ⵠⶠⱠââ³â¡â³ tâ€â¡ â£âârs r s tâ€ât sâtâsâ¢â¡ â± ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ â£âŠââ¥ts â§â¡ââ¥â£ âŠâ¥ tâ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â¿ ââ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â³ ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t âs ââŠâ¥sâââ¡r tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â¡qââtââŠâ¥â¿ â ⚠¬ â = â¶ . â â â® ââ€â¡â¥ â â â® âs â¥âŠt â⥠âââ¡â¥tâtâ¡ âŠââ¡r [ âµ , â¶ ] â¿ tâ€â¡ âŠâ¥â§â¡ â¡âââ§ââtââŠâ¥s ââ¥t⊠[ âµ , â¶ ] tâ€ât sâtâsâ¢â¡ â â â® ârâ¡ â ᅵ â âµ ââ¥â â ᅵ â ⶠ†tâ€â¡ ââŠâŠâ§â¡ââ¥â± âŠr ââ§âssââââ§â± â¡âââ§ââtââŠâ¥sâ³
âµ â¶ â· â± ââ€â¡ â¡âââ§ââtââŠâ¥s âŠâ¢ â ââ¥â â¡ ââ¥t⊠ⵠⶠⱠââ³â¡â³ tâ€â¡ â£âârs r s tâ€ât sâtâsâ¢â¡ â± ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ â£âŠââ¥ts â§â¡ââ¥â£ âŠâ¥ tâ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â¿ ââ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t âs ââŠâ¥sâââ¡r tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â¡qââtââŠâ¥â¿ â ⚠¬ â = â¶ . â â â® ââ€â¡â¥ â â â® âs â¥âŠt â⥠âââ¡â¥tâtâ¡ âŠââ¡r [ âµ , â¶ ] â¿ tâ€â¡ âŠâ¥â§â¡ â¡âââ§ââtââŠâ¥s ââ¥t⊠[ âµ , â¶ ] tâ€ât sâtâsâ¢â¡ â â â® ârâ¡ â ᅵ â âµ ââ¥â â ᅵ â ⶠ†tâ€â¡ ââŠâŠâ§â¡ââ¥â± âŠr ââ§âssââââ§â± â¡âââ§ââtââŠâ¥sâ³ ââ¡râ¡ âs â â·â²âârââââ§â¡ â£â¡â¥â¡rââ§âsâtââŠâ¥ âŠâ¢ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr tâ¡râ â¿ â ⚠¬ â ⚠⡠⚠¬ â¡ = â¶ â ââ â®
ââ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â³ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t âs ââŠâ¥sâââ¡r tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â¡qââtââŠâ¥â¿ â ⚠¬ â = â¶ . â â â® ââ€â¡â¥ â â â® âs â¥âŠt â⥠âââ¡â¥tâtâ¡ âŠââ¡r [ âµ , â¶ ] â¿ tâ€â¡ âŠâ¥â§â¡ â¡âââ§ââtââŠâ¥s ââ¥t⊠[ âµ , â¶ ] tâ€ât sâtâsâ¢â¡ â â â® ârâ¡ â ᅵ â âµ ââ¥â â ᅵ â ⶠ†tâ€â¡ ââŠâŠâ§â¡ââ¥â± âŠr ââ§âssââââ§â± â¡âââ§ââtââŠâ¥sâ³ ââ¡râ¡ âs â â·â²âârââââ§â¡ â£â¡â¥â¡rââ§âsâtââŠâ¥ âŠâ¢ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr tâ¡râ â¿ â ⚠¬ â ⚠⡠⚠¬ â¡ = â¶ â ââ â® ââ€â¡ â¡âââ§ââtââŠâ¥s âŠâ¢ â ââ¥â â¡ ââ¥t⊠[ âµ , â¶ ] â± ââ³â¡â³ tâ€â¡ â£âârs ( r , s ) â [ âµ , â¶ ] â· â± tâ€ât sâtâsâ¢â¡ ( ââ ) â± ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ â£âŠââ¥ts â§â¡ââ¥â£ âŠâ¥ tâ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â¿
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t âs ââŠâ¥sâââ¡r tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr â¡qââtââŠâ¥â¿ â ⚠¬ â = â¶ . â â â® ââ€â¡â¥ â â â® âs â¥âŠt â⥠âââ¡â¥tâtâ¡ âŠââ¡r [ âµ , â¶ ] â¿ tâ€â¡ âŠâ¥â§â¡ â¡âââ§ââtââŠâ¥s ââ¥t⊠[ âµ , â¶ ] tâ€ât sâtâsâ¢â¡ â â â® ârâ¡ â ᅵ â âµ ââ¥â â ᅵ â ⶠ†tâ€â¡ ââŠâŠâ§â¡ââ¥â± âŠr ââ§âssââââ§â± â¡âââ§ââtââŠâ¥sâ³ ââ¡râ¡ âs â â·â²âârââââ§â¡ â£â¡â¥â¡rââ§âsâtââŠâ¥ âŠâ¢ tâ€â¡ tâ¡rtâââ â¥âŠâ¥ ââtâr tâ¡râ â¿ â ⚠¬ â ⚠⡠⚠¬ â¡ = â¶ â ââ â® ââ€â¡ â¡âââ§ââtââŠâ¥s âŠâ¢ â ââ¥â â¡ ââ¥t⊠[ âµ , â¶ ] â± ââ³â¡â³ tâ€â¡ â£âârs ( r , s ) â [ âµ , â¶ ] â· â± tâ€ât sâtâsâ¢â¡ ( ââ ) â± ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ â£âŠââ¥ts â§â¡ââ¥â£ âŠâ¥ tâ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â¿ ââ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£â⡠Ⳡ⚠¬ â³ = â¶ â â â® ââ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât ââ¥tâ¡râââ§â³ Ⳡ⚠¬ Ⳡ⚠⚠⚠¬ âš = â¶ â ââ â® ââ€â¡ ââŠââ¥âârâ¡ âŠâ¢ tâ€â¡ ââ¥ât sqâârâ¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââ€â¡ tââstâ¡â âââââ â¿ V ( { â¡ â â â· , ⢠â â âž } ) â ( t , t â· , t âž ) â³â® âPârââ â¡trâsâtââŠâ¥â¿ t ᅵâ
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ Rational polyhedra â²â¡âŠâ¥ârââŠâ¬s ârââ¥ââtâ¡â â ââŠsââ€â¡ârâŠâ¥ â â â§â§âstrâtââŠâ¥ â¢âŠr â²âââ PââââŠâ§ââ¬s ââ€â¡ âââââ¥â¡ PrâŠâ£âŠrtââŠâ¥â± â¶âºâµâŸâ³ â®
⥠âât†P â â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â ââŠâ¥â â â ⥠âât†â râtââŠâ¥ââ§ â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â ââŠâ¥â â â³ P ⥠Ⱡârâttâ¡â¥ ââŠâ¥â P â± âs tâ€â¡ ââ€â¡ ââŠâ¥ââ¡â â€ââ§â§ âŠâ¢ â sâ¡t P ââŠâ§â§â¡âtââŠâ¥ âŠâ¢ ââ§â§ ââŠâ¥ââ¡â ââŠâ âââ¥âtââŠâ¥s âŠâ¢ â¡â§â¡â â¡â¥ts âŠâ¢ P â¿ â â ââŠâ¥â P P ââ¥â âµ âât†ⶠr â â â â â r â r â â â¶ â â¶ âââ†â sâ¡t âs ââŠâ¥ââ¡â â⢠P ââŠâ¥â P â³ ââ€â¡ sâ¡t P âs âââ§â§â¡ââ¿ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ ââŠâ¥sâââ¡r ââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâ¡â âŒâ±â²ââ§â£â¡ârâsâ± ââ³â¡â³ tâ€âŠsâ¡ âŠâ¢ tâ€â¡ â¢âŠrâ F ⥠/Ξ â± âât†Ξ â ââ¥âtâ¡â§â¡ â£â¡â¥â¡râtâ¡â ââŠâ¥â£rââ¡â¥ââ¡ ââââ¡ââ§â®â³ ââ€â¡ âssââ â£tââŠâ¥ âŠâ¥ Ξ âs â¢âr â¢râŠâ ââ â âtâ¡râââ§â¿ tâ€â¡râ¡ âs â¥âŠ âââ§ââ¡rtâ¬s ââsâs ââ€â¡âŠrâ¡â â¢âŠr âŒâ±â²ââ§â£â¡ârâsâ³
⥠âât†P â â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â ââŠâ¥â â â ⥠âât†â râtââŠâ¥ââ§ â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â ââŠâ¥â â â³ P ââ€â¡ sâ¡t P âs âââ§â§â¡ââ¿ â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ ââŠâ¥sâââ¡r ââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâ¡â âŒâ±â²ââ§â£â¡ârâsâ± ââ³â¡â³ tâ€âŠsâ¡ âŠâ¢ tâ€â¡ â¢âŠrâ F ⥠/Ξ â± âât†Ξ â ââ¥âtâ¡â§â¡ â£â¡â¥â¡râtâ¡â ââŠâ¥â£rââ¡â¥ââ¡ ââââ¡ââ§â®â³ ââ€â¡ âssââ â£tââŠâ¥ âŠâ¥ Ξ âs â¢âr â¢râŠâ ââ â âtâ¡râââ§â¿ tâ€â¡râ¡ âs â¥âŠ âââ§ââ¡rtâ¬s ââsâs ââ€â¡âŠrâ¡â â¢âŠr âŒâ±â²ââ§â£â¡ârâsâ³ ââ€â¡ ââŠâ¥ââ¡â â€ââ§â§ âŠâ¢ â sâ¡t P â R ⥠Ⱡârâttâ¡â¥ ââŠâ¥â P â± âs tâ€â¡ ââŠâ§â§â¡âtââŠâ¥ âŠâ¢ ââ§â§ ââŠâ¥ââ¡â ââŠâ âââ¥âtââŠâ¥s âŠâ¢ â¡â§â¡â â¡â¥ts âŠâ¢ P ⿠ᅵ â ᅵ â ᅵ ᅵ ââŠâ¥â P = r â â â | â â â P ââ¥â ⵠᅵ r â â R âât†r â = â¶ . â = â¶ â = â¶ âââ†â sâ¡t âs ââŠâ¥ââ¡â â⢠P = ââŠâ¥â P â³
⥠âât†â râtââŠâ¥ââ§ â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â ââŠâ¥â â â³ P â²ââŠâsââ¡âââ⢠⥠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ ââŠâ¥sâââ¡r ââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâ¡â âŒâ±â²ââ§â£â¡ârâsâ± ââ³â¡â³ tâ€âŠsâ¡ âŠâ¢ tâ€â¡ â¢âŠrâ F ⥠/Ξ â± âât†Ξ â ââ¥âtâ¡â§â¡ â£â¡â¥â¡râtâ¡â ââŠâ¥â£rââ¡â¥ââ¡ ââââ¡ââ§â®â³ ââ€â¡ âssââ â£tââŠâ¥ âŠâ¥ Ξ âs â¢âr â¢râŠâ ââ â âtâ¡râââ§â¿ tâ€â¡râ¡ âs â¥âŠ âââ§ââ¡rtâ¬s ââsâs ââ€â¡âŠrâ¡â â¢âŠr âŒâ±â²ââ§â£â¡ârâsâ³ ââ€â¡ ââŠâ¥ââ¡â â€ââ§â§ âŠâ¢ â sâ¡t P â R ⥠Ⱡârâttâ¡â¥ ââŠâ¥â P â± âs tâ€â¡ ââŠâ§â§â¡âtââŠâ¥ âŠâ¢ ââ§â§ ââŠâ¥ââ¡â ââŠâ âââ¥âtââŠâ¥s âŠâ¢ â¡â§â¡â â¡â¥ts âŠâ¢ P ⿠ᅵ â ᅵ â ᅵ ᅵ ââŠâ¥â P = r â â â | â â â P ââ¥â ⵠᅵ r â â R âât†r â = â¶ . â = â¶ â = â¶ âââ†â sâ¡t âs ââŠâ¥ââ¡â â⢠P = ââŠâ¥â P â³ ââ€â¡ sâ¡t P âs âââ§â§â¡ââ¿ â â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â â R ⥠âât†P = ââŠâ¥â â â
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡ ââŠâ¥sâââ¡r ââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâ¡â âŒâ±â²ââ§â£â¡ârâsâ± ââ³â¡â³ tâ€âŠsâ¡ âŠâ¢ tâ€â¡ â¢âŠrâ F ⥠/Ξ â± âât†Ξ â ââ¥âtâ¡â§â¡ â£â¡â¥â¡râtâ¡â ââŠâ¥â£rââ¡â¥ââ¡ ââââ¡ââ§â®â³ ââ€â¡ âssââ â£tââŠâ¥ âŠâ¥ Ξ âs â¢âr â¢râŠâ ââ â âtâ¡râââ§â¿ tâ€â¡râ¡ âs â¥âŠ âââ§ââ¡rtâ¬s ââsâs ââ€â¡âŠrâ¡â â¢âŠr âŒâ±â²ââ§â£â¡ârâsâ³ ââ€â¡ ââŠâ¥ââ¡â â€ââ§â§ âŠâ¢ â sâ¡t P â R ⥠Ⱡârâttâ¡â¥ ââŠâ¥â P â± âs tâ€â¡ ââŠâ§â§â¡âtââŠâ¥ âŠâ¢ ââ§â§ ââŠâ¥ââ¡â ââŠâ âââ¥âtââŠâ¥s âŠâ¢ â¡â§â¡â â¡â¥ts âŠâ¢ P ⿠ᅵ â ᅵ â ᅵ ᅵ ââŠâ¥â P = r â â â | â â â P ââ¥â ⵠᅵ r â â R âât†r â = â¶ . â = â¶ â = â¶ âââ†â sâ¡t âs ââŠâ¥ââ¡â â⢠P = ââŠâ¥â P â³ ââ€â¡ sâ¡t P âs âââ§â§â¡ââ¿ â â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â â R ⥠âât†P = ââŠâ¥â â â â râtââŠâ¥ââ§ â£âŠâ§â¡tâŠâ£â¡â± â⢠tâ€â¡râ¡ âs â ââ¥âtâ¡ â â Q ⥠âât†P = ââŠâ¥â â â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â â£âŠâ§â¡tâŠâ£â¡ â⥠R â· â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â â£âŠâ§â¡tâŠâ£â¡ â⥠R â· â â sââ â£â§â¡â â® â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â âââŠâ â£ââtâ® â£âŠâ§â¡â€â¡ârâŠâ¥ â⥠R ⥠âs â ââ¥ââŠâ¥ âŠâ¢ ââ¥âtâ¡â§â¡ â ââ¥â¡ â£âŠâ§â¡tâŠâ£â¡s â⥠R ⥠Ⳡâ â£âŠâ§â¡â€â¡ârâŠâ¥ â⥠R â· â³ âââ ââ§ârâ§â¡â± â râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâŠâ¥ âs â ââ¥ââŠâ¥ âŠâ¢ ââ¥âtâ¡â§â¡ â ââ¥â¡ râtââŠâ¥ââ§ â£âŠâ§â¡tâŠâ£â¡sâ³
âââ†Ⲡâ ââ⥠ââ¡ ârâttâ¡â¥ âs â â§ââ¥â¡âr â£âŠâ§â¡â¥âŠâ âââ§ âât†ââ¥tâ¡â£â¡r ââŠâ¡ââââ¡â¥tsâ³ â ââ¡tââ¡â¡â¥ â£âŠâ§â¡â€â¡ârâ ââ§âââ¡s âs âŠâ¢ tâ€â¡ ⥠â â â⣠â P â â¢âŠrâ â ⢠ⶠ⢠â Ⱡ⢠â P â³ ââ€â¡â¥ â âs â â²â â⣠â⢠â¡ââ†âŠâ¥â¡ âŠâ¢ âts sâââ§âr ââŠâ â£âŠâ¥â¡â¥ts ⢠â âsⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t P â R ⥠ââ¡ â râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâŠâ¥â³ â ââŠâ¥tââ¥ââŠâs â¢ââ¥âtââŠâ¥ ⢠: P â R âs â Z â²â â⣠â⢠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ â€âŠâ§ââ³ 1 ââ€â¡râ¡ âs â ââ¥âtâ¡ sâ¡t { â² â¶ , . . . , â² â } âŠâ¢ âââ¥â¡ â§ââ¥â¡âr â¢ââ¥âtââŠâ¥s â² â : R ⥠â R sââ†tâ€ât ⢠( â ) = â² â â ( â ) â¢âŠr sâŠâ ⡠ⶠᅵ â â ᅵ â â³ â â£ââ¡ââ¡ââsâ¡ â§ââ¥â¡âr â¢ââ¥âtââŠâ¥ [ âµ , â¶ ] â R â³
â ââ¡tââ¡â¡â¥ â£âŠâ§â¡â€â¡ârâ ââ§âââ¡s âs âŠâ¢ tâ€â¡ ⥠â â â⣠â P â â¢âŠrâ â ⢠ⶠ⢠â Ⱡ⢠â P â³ ââ€â¡â¥ â âs â â²â â⣠â⢠â¡ââ†âŠâ¥â¡ âŠâ¢ âts sâââ§âr ââŠâ â£âŠâ¥â¡â¥ts ⢠â âsⳠ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t P â R ⥠ââ¡ â râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâŠâ¥â³ â ââŠâ¥tââ¥ââŠâs â¢ââ¥âtââŠâ¥ ⢠: P â R âs â Z â²â â⣠â⢠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ â€âŠâ§ââ³ 1 ââ€â¡râ¡ âs â ââ¥âtâ¡ sâ¡t { â² â¶ , . . . , â² â } âŠâ¢ âââ¥â¡ â§ââ¥â¡âr â¢ââ¥âtââŠâ¥s â² â : R ⥠â R sââ†tâ€ât ⢠( â ) = â² â â ( â ) â¢âŠr sâŠâ ⡠ⶠᅵ â â ᅵ â â³ 2 âââ†Ⲡâ ââ⥠ââ¡ ârâttâ¡â¥ âs â â§ââ¥â¡âr â£âŠâ§â¡â¥âŠâ âââ§ âât†ââ¥tâ¡â£â¡r ââŠâ¡ââââ¡â¥tsâ³ â â£ââ¡ââ¡ââsâ¡ â§ââ¥â¡âr â¢ââ¥âtââŠâ¥ [ âµ , â¶ ] â R â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ â²â¡t P â R ⥠ââ¡ â râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâŠâ¥â³ â ââŠâ¥tââ¥ââŠâs â¢ââ¥âtââŠâ¥ ⢠: P â R âs â Z â²â â⣠â⢠tâ€â¡ â¢âŠâ§â§âŠâââ¥â£ â€âŠâ§ââ³ 1 ââ€â¡râ¡ âs â ââ¥âtâ¡ sâ¡t { â² â¶ , . . . , â² â } âŠâ¢ âââ¥â¡ â§ââ¥â¡âr â¢ââ¥âtââŠâ¥s â² â : R ⥠â R sââ†tâ€ât ⢠( â ) = â² â â ( â ) â¢âŠr sâŠâ ⡠ⶠᅵ â â ᅵ â â³ 2 âââ†Ⲡâ ââ⥠ââ¡ ârâttâ¡â¥ âs â â§ââ¥â¡âr â£âŠâ§â¡â¥âŠâ âââ§ âât†ââ¥tâ¡â£â¡r ââŠâ¡ââââ¡â¥tsâ³ â â£ââ¡ââ¡ââsâ¡ â§ââ¥â¡âr â¢ââ¥âtââŠâ¥ [ âµ , â¶ ] â R â³ â â â⣠â : P â R ⥠â â â R â ââ¡tââ¡â¡â¥ â£âŠâ§â¡â€â¡ârâ ââ§âââ¡s âs âŠâ¢ tâ€â¡ â¢âŠrâ â = ( ⢠ⶠ, . . . , ⢠â ) Ⱡ⢠â : P â R â³ ââ€â¡â¥ â âs â Z â²â â⣠â⢠â¡ââ†âŠâ¥â¡ âŠâ¢ âts sâââ§âr ââŠâ â£âŠâ¥â¡â¥ts ⢠â âsâ³
ââ€â¡ ââtâ¡â£âŠrâ¡ âŠâ¢ ââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâ¡â âŒâ±â²ââ§â£â¡ârâsâ± ââ¥â tâ€â¡âr â€âŠâ âŠâ âŠrâ£â€âsâ sâ± âs â¡qâââââ§â¡â¥t t⊠tâ€â¡ âŠâ£â£âŠsâtâ¡ âŠâ¢ tâ€â¡ ââtâ¡â£âŠrâ¡ âŠâ¢ râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârââ± ââ¥â tâ€â¡ â²â ââ£s ââ âŠâ¥â£st tâ€â¡â â³ â±â³âŒâ³ â« â²â³ ââ£ââââ± ââââ§âtâ¡â± â£râŠâ¥â¡âtâââtâ¡â± ââ¥â ââ¥ââââtââŠâ¥ â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ ââ¥â âŒâ±â²ââ§â£â¡ârâs â± ââ¥â¥ââ§s âŠâ¢ Pârâ¡ ââ¥â ââ£â£â§ââ¡â â²âŠâ£âââ± â·âµâ¶â·â³ âŠâ£ â¢â£ ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ sââsâ¡ts âŠâ¢ R ⥠tâ€ât ârâ¡ ââ¡ââ¥âââ§â¡ ââ¡ â tâ¡râ â⥠tâ€â¡ â§ââ¥â£âââ£â¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâsâ ââ¥â Z â²â ââ£s ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ ââŠâ¥tââ¥ââŠâs trââ¥sâ¢âŠrâ âtââŠâ¥s tâ€ât ârâ¡ ââ¡ââ¥âââ§â¡ ââ¡ tââ£â§â¡s âŠâ¢ tâ¡râ s â⥠tâ€ât â§ââ¥â£âââ£â¡â³
⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ââtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ sââsâ¡ts âŠâ¢ R ⥠tâ€ât ârâ¡ ââ¡ââ¥âââ§â¡ ââ¡ â tâ¡râ â⥠tâ€â¡ â§ââ¥â£âââ£â¡ âŠâ¢ âŒâ±â²ââ§â£â¡ârâsâ ââ¥â Z â²â ââ£s ârâ¡ â£râ¡ââsâ¡â§â¡ tâ€â¡ ââŠâ¥tââ¥ââŠâs trââ¥sâ¢âŠrâ âtââŠâ¥s tâ€ât ârâ¡ ââ¡ââ¥âââ§â¡ ââ¡ tââ£â§â¡s âŠâ¢ tâ¡râ s â⥠tâ€ât â§ââ¥â£âââ£â¡â³ Stone-type duality for finitely presented MV-algebras ââ€â¡ ââtâ¡â£âŠrâ¡ âŠâ¢ ââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâ¡â âŒâ±â²ââ§â£â¡ârâsâ± ââ¥â tâ€â¡âr â€âŠâ âŠâ âŠrâ£â€âsâ sâ± âs â¡qâââââ§â¡â¥t t⊠tâ€â¡ âŠâ£â£âŠsâtâ¡ âŠâ¢ tâ€â¡ ââtâ¡â£âŠrâ¡ âŠâ¢ râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârââ± ââ¥â tâ€â¡ Z â²â ââ£s ââ âŠâ¥â£st tâ€â¡â â³ â±â³âŒâ³ â« â²â³ ââ£ââââ± ââââ§âtâ¡â± â£râŠâ¥â¡âtâââtâ¡â± ââ¥â ââ¥ââââtââŠâ¥ â⥠⥠â²ââŠâsââ¡âââ⢠â§âŠâ£ââ ââ¥â âŒâ±â²ââ§â£â¡ârâs â± ââ¥â¥ââ§s âŠâ¢ Pârâ¡ ââ¥â ââ£â£â§ââ¡â â²âŠâ£âââ± â·âµâ¶â·â³ Poly âŠâ£ MV â¢â£ Q
⥠Ⱡtâ€â¡ ârâŠâ râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ t⊠âŒâ±â²ââ§â£â¡ârâs â¿ ââââ¡â¥ P ââŠâ§â§â¡âtââŠâ¥ âŠâ¢ ââ§â§ â²â ââ£s P âµ â¶ âs â âââ¥âtâ¡â§â¡ P â£râ¡sâ¡â¥tâââ§â¡â® âŒâ±â²ââ§â£â¡ârâ ââ¥ââ¡r tâ€â¡ â£âŠââ¥tââsâ¡ âŠâ£â¡râtââŠâ¥ ââ¥â€â¡râtâ¡â â¢râŠâ âµ â¶ â³ ââ ââ â£â§â¡ â³ â ⢠âs âââ¡â¥tââââ§â§â¡ â¡qâââ§ t⊠ⵠâ⥠ââ¥â¡ â â¶ â ⥠âŒâ±â²ââ§â£â¡ârââ± tâ€â¡â¥ ât â£â¡â¥â¡râtâ¡s tâ€â¡ trâââââ§ âââ¡ââ§ âµ â³ â ⥠tâ€âs ââsâ¡â± ⵠⶠ⥠Ⳡââ¡â¥ââ¡ tâ€â¡ ââââ§s âŠâ¢ â¢râ¡â¡ ⥠Ⱡââ¥â ⥠ââ§â£â¡ârâs ârâ¡ tâ€â¡ ââ¥ât ââââ¡sⳠⵠⶠ⥠â€âŠâ â¡âŠâ âŠrâ£â€ââ t⊠tâ€â¡ â ââ ââ ââ§ ââ¡â âr⊠Ⳡââ€â¡ sââsâ£âââ¡ sâ£â¡âtrââ§ sâ£âââ¡ âŠâ¢ â± tâŠâ£âŠâ§âŠâ£âsâ¡â ââ¡ tâ€â¡ âââ¥ââ§âŠâ£ââ¡ âŠâ¢â® tâ€â¡ â©ârâsâŠâ ⥠tâŠâ£âŠâ§âŠâ£â¡â³ ââ€â¡ âŒâ±â²ââ§â£â¡ârâ P âs tâ€â¡ â¡â âât ââ¥ââ§âŠâ£ââ¡ â¢âŠr râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ âŠâ¢ tâ€â¡ ââŠâŠrâââ¥âtâ¡ rââ¥â£ âŠâ¢ â⥠âââ¥â¡ ââ§â£â¡ârâââ âârââ¡tâ¡â³ ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ârâŠâ âŒâ±â²ââ§â£â¡ârâs t⊠râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ â¿ ââââ¡â¥ F ⥠/ ᅵ Ï ( â â¶ , . . . , â ⥠) ᅵ â± tâ€â¡ âssâŠâââtâ¡â râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâŠâ¥ V ( Ï ) âs tâ€â¡ sâ¡t âŠâ¢ ⥠â²tââ£â§â¡s ( r â¶ , . . . , r ⥠) â [ âµ , â¶ ] ⥠sââ†tâ€ât Ï ( r â¶ , . . . , r ⥠) = âµ â⥠[ âµ , â¶ ] â³
ââ ââ â£â§â¡ â³ â ⢠âs âââ¡â¥tââââ§â§â¡ â¡qâââ§ t⊠ⵠâ⥠ââ¥â¡ â â¶ â ⥠âŒâ±â²ââ§â£â¡ârââ± tâ€â¡â¥ ât â£â¡â¥â¡râtâ¡s tâ€â¡ trâââââ§ âââ¡ââ§ âµ â³ â ⥠tâ€âs ââsâ¡â± ⵠⶠ⥠Ⳡââ¡â¥ââ¡ tâ€â¡ ââââ§s âŠâ¢ â¢râ¡â¡ ⥠Ⱡââ¥â ⥠ââ§â£â¡ârâs ârâ¡ tâ€â¡ ââ¥ât ââââ¡sⳠⵠⶠ⥠â€âŠâ â¡âŠâ âŠrâ£â€ââ t⊠tâ€â¡ â ââ ââ ââ§ ââ¡â âr⊠Ⳡââ€â¡ sââsâ£âââ¡ sâ£â¡âtrââ§ sâ£âââ¡ âŠâ¢ â± tâŠâ£âŠâ§âŠâ£âsâ¡â ââ¡ tâ€â¡ âââ¥ââ§âŠâ£ââ¡ âŠâ¢â® tâ€â¡ â©ârâsâŠâ ⥠tâŠâ£âŠâ§âŠâ£â¡â³ ââ€â¡ âŒâ±â²ââ§â£â¡ârâ P âs tâ€â¡ â¡â âât ââ¥ââ§âŠâ£ââ¡ â¢âŠr râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ âŠâ¢ tâ€â¡ ââŠâŠrâââ¥âtâ¡ rââ¥â£ âŠâ¢ â⥠âââ¥â¡ ââ§â£â¡ârâââ âârââ¡tâ¡â³ ⥠â²ââŠâsââ¡âââ⢠ââ€ââ¥â£ PâŠâ§â¡â€â¡ârâ ââ£ââ§âŠâ£ââ¡ ârâŠâ âŒâ±â²ââ§â£â¡ârâs t⊠râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ â¿ ââââ¡â¥ F ⥠/ ᅵ Ï ( â â¶ , . . . , â ⥠) ᅵ â± tâ€â¡ âssâŠâââtâ¡â râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâŠâ¥ V ( Ï ) âs tâ€â¡ sâ¡t âŠâ¢ ⥠â²tââ£â§â¡s ( r â¶ , . . . , r ⥠) â [ âµ , â¶ ] ⥠sââ†tâ€ât Ï ( r â¶ , . . . , r ⥠) = âµ â⥠[ âµ , â¶ ] â³ ârâŠâ râtââŠâ¥ââ§ â£âŠâ§â¡â€â¡ârâ t⊠âŒâ±â²ââ§â£â¡ârâs â¿ ââââ¡â¥ P â R ⥠Ⱡtâ€â¡ ââŠâ§â§â¡âtââŠâ¥ â ( P ) âŠâ¢ ââ§â§ Z â²â ââ£s P â [ âµ , â¶ ] âs â âââ¥âtâ¡â§â¡ â£râ¡sâ¡â¥tâââ§â¡â® âŒâ±â²ââ§â£â¡ârâ ââ¥ââ¡r tâ€â¡ â£âŠââ¥tââsâ¡ âŠâ£â¡râtââŠâ¥ ââ¥â€â¡râtâ¡â â¢râŠâ [ âµ , â¶ ] â³
Recommend
More recommend