Galaxy formation in SPHS Justin Read ETH Zürich | University of Leicester With: T. Hayfield, A. Hobbs, C. Power
Background | ‘Classic’ SPH N ⇧ Integral ρ i = m j W ij ( | r ij | , h i ) ( Continuity j N d v i m j ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij Momentum ⇧ j P i = A i ρ γ ; A i = const . Eqn. of state i Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
Background | The Euler equations (Lagrangian ‘entropy’ form) N N ⇧ ⇧ ρ i = ρ i = m j W ij ( | r ij | , h i ) m j W ij ( | r ij | , h i ) ( ( Integral Continuity Integral Continuity j j ! N d v i P i + P j X ⇧ ⇧ Momentum Momentum m j r i W ij dt = ρ 2 ρ 2 i i j j P i = A i ρ γ P i = A i ρ γ ; A i = const . ; A i = const . Eqn. of state Eqn. of state i i j ‘classic’ SPH [inc. ‘energy’ form and similar] Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
Background | The Euler equations (Lagrangian ‘entropy’ form) N N ⇧ ⇧ ρ i = ρ i = m j W ij ( | r ij | , h i ) m j W ij ( | r ij | , h i ) ( ( Integral Continuity Integral Continuity j j N N d v i m j d v i m j ⇧ ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij dt = ρ i ρ j ( P i + P j ) ⇤ i W ij ⇧ ⇧ Momentum Momentum i j j P i = A i ρ γ P i = A i ρ γ ; A i = const . ; A i = const . Eqn. of state Eqn. of state i i j Improved force error Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
Background | Advantages of SPH 1. Lagrangian 2. Galilean invariant 3. Manifestly conservative 4. Easy to implement 5. Couples to O(N) FMM gravity Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
Background | Some problems with ‘classic’ SPH The “blob test” A 1:10 density ratio gas sphere in a wind tunnel (Mach 2.7), initially in pressure eq. Agertz et al. 2007
Background | Some problems with ‘classic’ SPH 1. The ‘E0’ error 2. Multivalued pressures 3. Overly viscous 4. Noisy Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Taylor expanding the momentum equation N d v i m j ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij Momentum j P j � P i + hx ij · ∇ P i + O ( h 2 ) Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Taylor expanding the momentum equation N d v i m j ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij Momentum j N d v i dt ⇥ � P i m j i W ij � M i ⇤ i P i ⇧ ρ j ⇤ x h i ρ i 2 + O ( h ) ( ρ i j ⇒ Euler eqn. E 0 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling N ⌃ m j ⇧ ρ j ⇤ x dV ⇤ x W E 0 = 2 i W ij ⇥ 2 V j x x x x x x x x x x xx x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1. Smooth on kernel scale (stable kernel) 2. Larger neighbour number 3. More power in kernel wings Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling HOCT CS CT Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 ` Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-CS128 100 80 y 60 40 20 − 40 − 20 0 20 40 x Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-CT128 100 80 y 60 40 20 − 40 − 20 0 20 40 x Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-HOCT442 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-HOCT442 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
2. Multivalued pressures | The problem x o x x o x x o x P 1 = A 1 ρ γ P 2 = A 2 ρ γ x o 1 2 x x o x x o x P 1 = P 2 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
2. Multivalued pressures | The problem x o x x o x x o x P 1 = A 1 ρ γ P 2 = A 2 ρ γ o x x x o x x o x P 1 � = P 2 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
2. Multivalued pressures | The problem 1.3 SPH-HOCT442 1.2 1.1 P P 0 1.0 0.9 0.8 0 20 40 60 80 100 y Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011
2. Multivalued pressures | An ‘early warning’ switch P Add conservative dissipation: Momentum : Artificial viscosity Entropy : Artificial thermal conductivity Mass : (i.e. for multimass applications) A 1 , m 1 , v 1 ... A 2 , m 2 , v 2 ... Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011; Ritchie & Thomas 2001; Price 2008; Wadsley et al. 2008; Cullen & Dehnen 2010
2. Multivalued pressures | An ‘early warning’ switch ⇧ h 2 i | ⌅ ( ⌅ · v i ) | ⌅ · v i < 0 i | ⌅ ( ⌅ · v i ) | + h i | ⌅ · v i | + n s c s α max h 2 α loc ,i = [i.e. converging] 0 [i.e. going to converge] otherwise [Requires high order gradient estimator] α i = α loc ,i α i < α loc ,i otherwise, α i smoothly decays back to zero: α i = ( α loc ,i � α i ) / τ i ˙ α min < α loc ,i < α i α i = ( α min � α i ) / τ i ˙ α min > α loc ,i Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011; Ritchie & Thomas 2001; Price 2008; Wadsley et al. 2008; Cullen & Dehnen 2010
SPHS | Putting it all together 1. ‘E0’ error reduced using 442 neighbours and stable higher order HOCT kernel. Also much lower noise (4). 2. Multivalued pressures eliminated using advance warning high order switch and conservative dissipation. Lower viscosity away from shocks (3); multimass particles now possible. 3. Timestep limiter [Saitoh & Makino 2009] => strong shocks correctly tracked. 4. Implementations in GADGET2 & 3. Read & Hayfield 2011
SPHS tests | Sedov-Taylor blast wave SPHS-442 ` Read & Hayfield 2011
SPHS tests | Sedov-Taylor blast wave Read & Hayfield 2011
SPHS tests | Sedov-Taylor blast wave Read & Hayfield 2011
SPHS tests | Sedov-Taylor blast wave Read & Hayfield 2011
SPHS tests | Gresho vortex SPHS-442 Read & Hayfield 2011
SPHS tests | Gresho vortex Read & Hayfield 2011
SPHS tests | KH instability 1:8 density contrast ... multimass SPHS-442 ` multimass Read & Hayfield 2011
SPHS tests | Blob test SPHS-442 ` Read & Hayfield 2011
SPHS tests | Santa Barbara test SPH-32 SPHS-442 x8 Power, Read & Hobbs in prep. 2012
SPHS tests | Santa Barbara test SPH-32 SPHS-442 x128 Power, Read & Hobbs in prep. 2012
SPHS tests | Santa Barbara test SPH-32 SPHS-442 x128 Power, Read & Hobbs in prep. 2012
SPHS tests | Santa Barbara test z = 0 SPH-32 SPHS-442 Power, Read & Hobbs in prep. 2012
SPHS tests | Santa Barbara test z = 1 SPH-32 SPHS-442 Power, Read & Hobbs in prep. 2012
SPHS | Cooling halos SPH-96 SPHS-442 Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814
10 5 kpc -5 -10 Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814
Stars Gas 1000 1000 800 800 SPH 600 600 N stars N gas 400 400 200 200 SPHS 0 0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 J z /J c J z /J c Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814
SPH SPHS Density Density Pressure Pressure Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814
SPH SPHS Pressure Pressure Entropy Entropy Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814
SPHS-442 | 5M Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814
SPHS | Conclusions • ‘E0’ error reduced using 442 neighbours and stable higher order HOCT kernel. Much lower noise. • Multivalued pressures eliminated using advance warning high order switch and conservative dissipation. Lower viscosity away from shocks; multimass particles now possible. • Timestep limiter => strong shocks correctly tracked. • Good performance and convergence to >1% accuracy on a wide range of test problems. • Santa Barbara test => entropy profile core • Cooling halos => no SPH blobs
Recommend
More recommend