fluid limits for some mcmc samplers
play

Fluid Limits for some MCMC samplers Gersende FORT, CNRS, Paris, - PowerPoint PPT Presentation

Fluid Limits for some MCMC samplers Gersende FORT, CNRS, Paris, France. Joint work with Sean MEYN (Univ. of Illinois, Urbana, USA), Eric MOULINES (GET, France), Pierre PRIOURET (University Paris VI, France). Outline of the talk


  1. Fluid Limits for some MCMC samplers ◮ Gersende FORT, CNRS, Paris, France. Joint work with ◮ Sean MEYN (Univ. of Illinois, Urbana, USA), ◮ Eric MOULINES (GET, France), ◮ Pierre PRIOURET (University Paris VI, France).

  2. Outline of the talk We are interested in ◮ the existence + stability of the fluid limits for skip free Markov Chains. ◮ their use in the study of (some) MCMC samplers.

  3. Outline of the talk We are interested in ◮ the existence + stability of the fluid limits for skip free Markov Chains. ◮ their use in the study of (some) MCMC samplers. We will discuss 1. Fluid Limits for skip-free Markov Chains. ◮ the existence of fluid limits ◮ their characterization ◮ their stability and the stability of the Markov Chain. 2. Applications to Metropolis-Hastings Markov Chains ◮ Convergence of the samplers ◮ How to tune the parameters ?

  4. MCMC samplers / Hastings-Metropolis Sample from a (complex, unnormalized) distribution π on R d when exact sampling is not possible : Define a Markov Chain (Φ n , n ≥ 0) , with unique stationary distribution ∝ π and ergodic .

  5. MCMC samplers / Hastings-Metropolis Sample from a (complex, unnormalized) distribution π on R d when exact sampling is not possible : Define a Markov Chain (Φ n , n ≥ 0) , with unique stationary distribution ∝ π and ergodic . Ex. Hastings-Metropolis algorithm Given Φ t , define Φ t +1 by · Φ t +1 / 2 ∼ Q (Φ t , · ) . � Φ t +1 / 2 with prob. α (Φ t , Φ t +1 / 2 ) · Φ t +1 = with prob. 1 − α (Φ t , Φ t +1 / 2 ) , Φ t α ( x, z ) = 1 ∧ π ( z ) Q ( z,x ) where π ( x ) Q ( x,z ) .

  6. MCMC samplers / Hastings-Metropolis Problems : ◮ ( ⋆ ) Convergence ? (ergodicity) κ ( n ) | E x [ g (Φ n )] − π ( g ) | → 0 ∀ x, g ∈ ? ◮ Limit Theorems n n 1 � � n − 1 { g (Φ k ) − π ( g ) } → d N (0 , σ 2 g (Φ k ) → a . s . π ( g ) √ n g ) . k =1 k =1 ◮ ( ⋆ ) How to tune the parameters i.e. (here) the proposal kernel Q ( x, y )

  7. MCMC samplers / Hastings-Metropolis Problems : ◮ ( ⋆ ) Convergence ? (ergodicity) κ ( n ) | E x [ g (Φ n )] − π ( g ) | → 0 ∀ x, g ∈ ? ◮ Limit Theorems n n 1 � � n − 1 { g (Φ k ) − π ( g ) } → d N (0 , σ 2 g (Φ k ) → a . s . π ( g ) √ n g ) . k =1 k =1 ◮ ( ⋆ ) How to tune the parameters i.e. (here) the proposal kernel Q ( x, y ) Hereafter, illustrations in the case · symmetric HM : Q ( x, y ) = q ( | x − y | ) · q ( z ) ∼ σ N d (0 , I )[ z ]

  8. Existence of fluid limits (a) ֒ → Define a normalized process (i) in the initial point η r (0; x ) = 1 r Φ 0 = x, Φ 0 = rx. (ii) in time and space η r ( t ; x ) = 1 r Φ ⌊ tr ⌋ , � k � η r ( t ; x ) = 1 r ; ( k + 1) r Φ k on . r

  9. Existence of fluid limits (a) ֒ → Define a normalized process (i) in the initial point η r (0; x ) = 1 r Φ 0 = x, Φ 0 = rx. (ii) in time and space η r ( t ; x ) = 1 r Φ ⌊ tr ⌋ , � k � η r ( t ; x ) = 1 r ; ( k + 1) r Φ k on . r ◮ Distributions · P x : distribution of the Markov Chain with initial distribution δ x . · Q r ; x : image prob. of P x by η r ( · ; x ) prob. on the space of ag functions R + → X. c` ad-l`

  10. Existence of fluid limits (b) efinition : Q x is a fluid limitif there exists { r n } n → + ∞ , { x n } n → x ◮ D´ s.t. ⇒ Q x Q r n ; x n = ag functions R + → X. on the space of the c` ad-l`

  11. Existence of fluid limits (b) efinition : Q x is a fluid limitif there exists { r n } n → + ∞ , { x n } n → x ◮ D´ s.t. ⇒ Q x Q r n ; x n = ag functions R + → X. on the space of the c` ad-l` Φ k +1 = Φ k + E [Φ k +1 |F k ] − Φ k + Φ k +1 − E [Φ k +1 |F k ]

  12. Existence of fluid limits (b) efinition : Q x is a fluid limitif there exists { r n } n → + ∞ , { x n } n → x ◮ D´ s.t. ⇒ Q x Q r n ; x n = ag functions R + → X. on the space of the c` ad-l` Φ k +1 = Φ k + E [Φ k +1 |F k ] − Φ k + Φ k +1 − E [Φ k +1 |F k ] = Φ k + E x [Φ k +1 − Φ k |F k ] + (Φ k +1 − E x [Φ k +1 |F k ]) . � �� � � �� � ǫ k +1 ∆(Φ k ) martingale increment

  13. Existence of fluid limits (b) efinition : Q x is a fluid limitif there exists { r n } n → + ∞ , { x n } n → x ◮ D´ s.t. ⇒ Q x Q r n ; x n = ag functions R + → X. on the space of the c` ad-l` Φ k +1 = Φ k + E [Φ k +1 |F k ] − Φ k + Φ k +1 − E [Φ k +1 |F k ] = Φ k + E x [Φ k +1 − Φ k |F k ] + (Φ k +1 − E x [Φ k +1 |F k ]) . � �� � � �� � ǫ k +1 ∆(Φ k ) martingale increment ◮ Result if � � | ǫ 1 | p 1 · ∃ p > 1 , lim K → + ∞ sup x ∈ X E x I | ǫ 1 | >K → 0 . · sup x ∈ X | ∆( x ) | < ∞ . Then fluid limits exist, prob. on the space of continuous functions ( whatever the initial point on the unit sphere )

  14. Example 1 : (regular case) 1 0.8 Level curves of the target density 15 0.6 0.4 10 0.2 5 0 0 −0.2 −0.4 −5 −0.6 −10 −0.8 −1 −15 −15 −10 −5 0 5 10 15 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 −0.2 −0.2 −0.4 −0.4 −0.6 −0.6 −0.8 −0.8 −1 −1 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 π ( x, y ) ∝ (1 + x 2 + y 2 + x 8 y 2) exp( − ( x 2 + y 2)) , q ∼ N (0 , 4) , r=100, r=1000, r=5000

  15. Example 2 : (irregular case) 1.2 1 Level curves of the target density 15 0.8 10 0.6 5 0.4 0 0.2 −5 0 −10 −0.2 −15 −15 −10 −5 0 5 10 15 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.2 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 −0.2 −0.2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 π ( x, y ) ∝ N (0 , Γ − 1 ) + N (0 , Γ − 1 ) , q ∼ N (0 , 1) , r=100, r=1000, r=5000 1 2

  16. Characterisation of the fluid limits ֒ → Can we describe the distributions Q x ? 1.2 1 0.8 0.6 0.4 0.2 0 −0.2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 π ( x, y ) ∝ mixture of Gaussian, q ∼ N (0 , I ) , r=5000 T=5

  17. Characterization (b) Φ k +1 = Φ k + ( E x [Φ k +1 |F k ] − Φ k ) + (Φ k +1 − E x [Φ k +1 |F k ]) � �� � � �� � ∆(Φ k ) ǫ k +1 martingale increment ◮ For the normalized process � k + 1 � = 1 η r , x r Φ k +1 r � k � � � k �� + 1 + 1 = η r r , x r ∆ r η r r , x r ǫ k +1 � k � � � k �� + 1 + 1 = η r r , x h η r r , x r ( ξ k + ǫ k +1 ) r where h ( x ) = r → + ∞ ∆( r x ) . lim

  18. Characterization (b) Φ k +1 = Φ k + ( E x [Φ k +1 |F k ] − Φ k ) + (Φ k +1 − E x [Φ k +1 |F k ]) � �� � � �� � ∆(Φ k ) ǫ k +1 martingale increment ◮ For the normalized process � k + 1 � = 1 η r , x r Φ k +1 r � k � � � k �� + 1 + 1 = η r r , x r ∆ r η r r , x r ǫ k +1 � k � � � k �� + 1 + 1 = η r r , x h η r r , x r ( ξ k + ǫ k +1 ) r where h ( x ) = r → + ∞ ∆( r x ) . lim ◮ Thus the dynamic � k + 1 � � k � � k � + 1 µ = µ r h ← → ODE : ˙ µ ( t ) = h ( µ ( t )) r r r in an additive noise.

  19. Characterisation (c) ◮ Theorem If · Existence of the fluid limit. · there exists an open cone O de X \ { 0 } , · h : O → X s.t. � � � → 0 , � r β ∆( rx ) − | x | − β h ( x ) sup r → + ∞ , x ∈ H for any compact H ⊆ O

  20. Characterisation (c) ◮ Theorem If · Existence of the fluid limit. · there exists an open cone O de X \ { 0 } , · h : O → X s.t. � � � → 0 , � r β ∆( rx ) − | x | − β h ( x ) sup r → + ∞ , x ∈ H for any compact H ⊆ O Then for all 0 ≤ s ≤ t , on { η, η ( u ) ∈ O , s ≤ u ≤ t } , � u � � � � Q β sup � η ( u ) − η ( s ) − h ◦ η ( v ) dv � = 0 , x − a.s. � � s ≤ u ≤ t s

  21. Characterisation (c) ◮ Theorem If · Existence of the fluid limit. · there exists an open cone O de X \ { 0 } , · h : O → X s.t. � � � → 0 , � r β ∆( rx ) − | x | − β h ( x ) sup r → + ∞ , x ∈ H for any compact H ⊆ O Then for all 0 ≤ s ≤ t , on { η, η ( u ) ∈ O , s ≤ u ≤ t } , � u � � � � Q β sup � η ( u ) − η ( s ) − h ◦ η ( v ) dv � = 0 , x − a.s. � � s ≤ u ≤ t s ◮ i.e. the fluid limit Q β x is a Dirac mass at the point η satisfying � u η ( u ) = η ( s ) + h ◦ η ( v ) dv, s ≤ u ≤ t, s whenever η ([ s, t ]) ⊂ O.

  22. Example 3 : Super-exponential case, O = X \ { 0 } Level curves of the target density Courbes de niveau de la densite 15 40 35 10 30 25 5 20 0 15 10 −5 5 0 −10 −5 −15 −10 −15 −10 −5 0 5 10 15 0 5 10 15 20 25 30 35 40 10 1.2 8 1 6 4 0.8 2 0.6 0 0.4 −2 −4 0.2 −6 0 −8 −10 −0.2 −4 −2 0 2 4 6 8 10 12 14 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 UpperLeft- Level curves of π UpperRight- Rejection area LowerRight- Process ηβ LowerLeft- Level curves, ∆ and h x and flow of the ODE.

  23. Example 4 : Super-exponential case, O � X \ { 0 } 6 1.2 Level curves of the target density 5.5 15 1 5 10 0.8 4.5 5 0.6 4 0 0.4 3.5 −5 0.2 3 −10 0 2.5 2 −15 −0.2 −15 −10 −5 0 5 10 15 2 2.5 3 3.5 4 4.5 5 5.5 6 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 Process ηβ Level curves of π Level curves, ∆ and h x and flow of the ODE.

Recommend


More recommend