filling the gap asteroids with slow rotation in thermal
play

Filling the gap Asteroids with slow rotation in thermal infrared A. - PowerPoint PPT Presentation

Selection effects Shape models TPM Results Summary Filling the gap Asteroids with slow rotation in thermal infrared A. Marciniak 1 , V. Al-Lagoa, T. Mller, P . Bartczak R. Behrend, M. Butkiewicz-B ak, G. Dudzi nski, R. Duffard, K.


  1. Selection effects Shape models TPM Results Summary Filling the gap Asteroids with slow rotation in thermal infrared A. Marciniak 1 , V. Alí-Lagoa, T. Müller, P . Bartczak R. Behrend, M. Butkiewicz-B ˛ ak, G. Dudzi´ nski, R. Duffard, K. Dziadura, S. Fauvaud, S. Geier, J. Grice, R. Hirsch, J. Horbowicz, K. Kami´ nski, P . Kankiewicz, D.-H. Kim, M.-J. Kim, I. Konstanciak, V. Kudak, L. Molnár, F. Monteiro, W. Ogłoza, D. Oszkiewicz, A. Pál, N. Parley, F. Pilcher, E. Podlewska - Gaca, T. Polakis, J. J. Sanabria, T. Santana-Ros, B. Skiff, K. Sobkowiak, R. Szakáts, S. Urakawa, M. ˙ Zejmo, K. ˙ Zukowski 1. Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Pozna´ n, Poland.

  2. Selection effects Shape models TPM Results Summary Selection effects in MBA models All 1230 asteroids with H ≥ 11 mag Division values: P = 12 h, a max = 0.25 mag. Marciniak et al. 2018

  3. Selection effects Shape models TPM Results Summary Selection effects in fainter MBA models All 2274 asteroids with 11 < H ≤ 13 mag Division values: P = 12 h, a max = 0.25 mag. Marciniak et al. 2018

  4. Selection effects Shape models TPM Results Summary Selected lightcurves 335 Roberta 109 Felicitas P=12.027 h P = 13.188 h 2013 -4,5 29 Sep, Bor. 2017 18 Oct, Organ M. Jan 22.3 CTIO 19 Oct, Bor. Jan 27.1 Bor. Jan 29.1 Bor. -3,3 19 Oct, Organ M. Feb 16.1 Bor. 25 Oct, Bor. 21 Nov, Organ M. Feb 22.4 Tempe 18 Dec, Organ M. -4,4 Feb 23.4 Tempe Relative C and R magnitude 23 Dec, Bor. Feb 24.4 Tempe Relative C magnitude Feb 25.4 Tempe Feb 27.4 Tempe Mar 1.4 Tempe -3,2 -4,3 -3,1 -4,2 Zero time at 2017 Jan 28.9650 UTC, LT corr. Zero time at: 2013 Sep 28.9158 UTC, LT corr. 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase 100 Hekate 538 Friederike P=27.068 h P=46.74 h 8,35 -3,5 Feb 1.1 Kepler 2018 Feb 2.1 Kepler Feb 3.3 Kepler 8,4 Feb 4.0 Kepler Feb 5.0 Kepler Feb 5.9 Kepler -3,4 May 19.1 Kepler Relative R and C magnitude 8,45 May19.8 Kepler Relative R magnitude May 20.8 Kepler May 21.8 Kepler May 22.5 Kepler 2018 8,5 -3,3 Oct 18.1 Bor. Oct 19.0 Bor. Nov 1.1 Bor. Nov 4.1 OAdM 8,55 Nov 6.1 Bor. Nov 7.1 Bor. Nov 10.4 Organ M. -3,2 Nov 17.4 Organ M. Nov 18.0 Bor. 8,6 Nov 29.3 Organ M. Dec 5.9 Bor. Dec 11.2 OAdM Zero time at: 2018 Jan 31.7150 UTC, LT corr. Zero time at: 2018 Oct 17.9492 UTC, LT corr. Dec 14.3 Organ M. 8,65 -3,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase

  5. Selection effects Shape models TPM Results Summary Fitting the shape models to stellar occultation chords Diameters of equivalent volume sphere: CONVEX (2011): 72 ± 4 km; CONVEX (2013): 74 ± 5 km SAGE (2011): 70 ± 4 km; SAGE (2013): 72 ± 3 km Marciniak et al. 2018

  6. Selection effects Shape models TPM Results Summary Thermophysical modelling Insolation and surface temperature distribution: (159) Aemilia

  7. Selection effects Shape models TPM Results Summary O-C plots for (159) Aemilia model applied in TPM

  8. Selection effects Shape models TPM Results Summary Rotation Radiometric solution for combined data. Target period Taxonomic Diameter Albedo Thermal inertia [Jm − 2 s − 0 . 5 K − 1 ] [h] type [km] 159 Aemilia 24 . 4787 Ch 137 0 . 054 50 ± 0 . 0001 ± 8 ± 0 . 015 ± 50 227 Philosophia 26 . 4614 C 101 0 . 041 125 ± 0 . 0001 ± 5 ± 0 . 005 ± 90 329 Svea 22 . 7670 C 78 0 . 055 75 ± 0 . 0001 ± 4 ± 0 . 015 ± 50 478 Tergeste 16 . 10312 L 87 0 . 15 75 ± 0 . 00003 ± 6 ± 0 . 02 ± 45 487 Venetia 13 . 34133 S 70 0 . 21 100 ± 0 . 00002 ± 4 ± 0 . 02 ± 75 Marciniak et al. 2018

  9. Selection effects Shape models TPM Results Summary Thermal inertia of Main Belt Asteroids Harris & Drube 2016

  10. Selection effects Shape models TPM Results Summary Thermal inertia of slow rotators after: Harris & Drube 2016

  11. Selection effects Shape models TPM Results Summary (195) Eurykleia model in thermophysical modelling

  12. Selection effects Shape models TPM Results Summary Thermal lightcurve fit to WISE W4 data (target: 673 Edda) 1.7 W4 data Best fit AM 1 1.6 1.5 Flux (Jy) 1.4 1.3 1.2 1.1 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Rotational phase

  13. Selection effects Shape models TPM Results Summary O-C plots for (673) Edda model applied in TPM 2 180 2 60 AM 1 AM 1 160 50 140 1.5 1.5 Wavelength (micron) 120 Aspect angle (deg.) 40 Obs/Mod Obs/Mod 100 1 1 30 80 60 20 0.5 0.5 40 20 10 0 0 0 10 100 2.805 2.81 2.815 2.82 2.825 2.83 2.835 2.84 2.845 Wavelength (micron) Heliocentric distance (au) 2 60 2 180 AM 1 AM 1 160 50 140 1.5 1.5 Wavelength (micron) Aspect angle (deg.) 120 40 Obs/Mod Obs/Mod 100 1 1 30 80 60 20 0.5 0.5 40 20 10 0 0 0 -40 -30 -20 -10 0 10 20 30 40 0 0.2 0.4 0.6 0.8 1 Phase angle (degree) Rotational phase

  14. Selection effects Shape models TPM Results Summary Summary of TPM results for (673) Edda. χ 2 Shape model IR data subset ¯ D ± 3 σ (km) Γ ± 3 σ (SIu) Roughness (rms) m 38 + 6 3 + 67 AM 1 All data 0.47 Med.-high (0.50) − 2 − 3 AM 1 sphere All data 1.83 38 5 Med.-high (0.39) 38 2 + 3 + 37 AM 2 All data 0.59 Extr. high (1.0) − 2 − 3 AM 2 sphere All data 1.76 38 10. Medium (0.44)

  15. Selection effects Shape models TPM Results Summary Rotation Radiometric solution for combined data. Target period Taxonomic Diameter Albedo Thermal inertia [h] type [km] [SI units] 87 + 5 0 . 22 + 0 . 03 4 + 66 100 Hekate 27 . 07027 S − 4 − 0 . 03 − 2 ± 0 . 00006 85 + 7 0 . 065 + 0 . 008 40 + 100 109 Felicitas 13 . 190550 Ch − 5 − 0 . 01 − 36 ± 0 . 000004 87 + 11 15 + 55 195 Eurykleia 16 . 52178 Ch 0 . 06 ± 0 . 02 − 9 − 15 ± 0 . 00002 55 + 2 0 . 047 + 0 . 004 45 + 60 301 Bavaria 12 . 24090 C − 2 − 0 . 003 − 30 ± 0 . 00001 98 + 10 0 . 046 + 0 . 014 335 Roberta 12 . 02713 B unconstrained − 11 − 0 . 008 ± 0 . 00003 72 + 9 0 . 057 + 0 . 009 10 + 140 380 Fiducia 13 . 71723 C − 5 − 0 . 012 − 10 ± 0 . 00002 69 + 11 0 . 052 + 0 . 006 20 + 280 468 Lina 16 . 47838 CPF − 4 − 0 . 014 − 20 ± 0 . 00003 77 + 4 10 + 25 538 Friederike 46 . 739 C 0 . 06 ± 0 . 01 − 2 − 10 ± 0 . 001 46 + 4 0 . 18 + 0 . 02 40 + 120 653 Berenike 12 . 48357 K − 2 − 0 . 03 − 40 ± 0 . 00003 38 + 6 0 . 13 + 0 . 03 3 + 67 673 Edda 22 . 33411 S − 2 − 0 . 05 − 3 ± 0 . 00004 67 + 8 0 . 074 + 0 . 014 20 + 30 834 Burnhamia 13 . 87594 GS − 6 − 0 . 016 − 20 ± 0 . 00002

  16. Selection effects Shape models TPM Results Summary Thermal inertia of slow rotators after: Harris & Drube 2016

  17. Selection effects Shape models TPM Results Summary Thermal inertia normalised to 1 AU vs. size

  18. Selection effects Shape models TPM Results Summary Summary Selection effects: spin and shape models mainly available for short-period, elongated asteroids with extreme obliquities Biased spatial spin axis and size-frequency distributions, lack of detailed models for slow rotators Our targeted survey of 100 long-period, low-amplitude MB asteroids. Gathered over 10 000 hours of lightcurve data in 20 stations worldwide (+ Kepler). Modelled 16 targets from this sample, scaled by TPM using IR data from IRAS, AKARI and WISE Found high, medium and very low thermal inertias Differences due to sub-surface temperatures and different material properties? Indication of fresh and old surfaces connected with formation age and/or size? This work was supported by grant no. 2014/13/D/ST9/01818 from National Science Centre, Poland. The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.

Recommend


More recommend