few body physics with relation to neutrinos
play

Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS - PowerPoint PPT Presentation

Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS Summer School Jefferson Lab - Newport News VA, June 2018 bla Thanks to the Organizers 1 / 78 Neutrinos (Fundamental Symmetries) and Nuclei Topics (5 hours) * Nuclear Theory for


  1. Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS Summer School Jefferson Lab - Newport News VA, June 2018 bla Thanks to the Organizers 1 / 78

  2. Neutrinos (Fundamental Symmetries) and Nuclei Topics (5 hours) * Nuclear Theory for the Neutrino Experimental Program � * Microscopic (or ab initio ) Description of Nuclei � * “Realistic” Models of Two- and Three-Nucleon Interactions ∼ � * “Realistic” Models of Many-Body Nuclear Electroweak Currents * Short-range Structure of Nuclei and Nuclear Correlations * Quasi-Elastic Electron and Neutrino Scattering off Nuclei * Validation of the theory against available data 2 / 78

  3. Nuclei for Accelerator Neutrinos’ Experiments LBNF T2K 12 C CCQE on Neutrino-Nucleus scattering 8 7 ℓ ′ 6 q 5 2 ] -38 cm Ankowski, SF ℓ 4 Athar, LFG+RPA σ [x 10 Benhar, SF GiBUU 3 Madrid, RMF Martini, LFG+RPA Nieves, LFG+SF+RPA 2 � ∆ m 2 RFG, M A =1 GeV � 21 L RFG, M A =1.35 GeV P ( ν µ → ν e ) = sin 2 2 θ sin 2 1 Martini, LFG+2p2h+RPA 2 E ν 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] Alvarez-Ruso arXiv:1012.3871 * Nuclei of 12 C , 40 Ar , 16 O , 56 Fe , ... * are the DUNE, MiniBoone, T2K, Miner ν a ... detectors’ active material 3 / 78

  4. Nuclear Physics for Neutrinoless Double Beta Decay Searches ✦ ✦ ✦ ✦ ✦ ✦ ✦ Majorana Demonstrator J. Engel and J. Men´ endez - arXiv:1610.06548 0 νββ -decay τ 1 / 2 � 10 25 years (age of the universe 1 . 4 × 10 10 years) need 1 ton of material to see (if any) ∼ 5 decays per year * Decay Rate ∝ (nuclear matrix elements) 2 ×� m ββ � 2 * 2015 Long Range Plane for Nuclear Physics 4 / 78

  5. Nuclear Structure and Dynamics * ω ∼ few MeV, q ∼ 0: EM decay, β -decay, ββ -decays * ω � tens MeV: Nuclear Rates for Astrophysics * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 5 / 78

  6. The Microscopic (or ab initio ) Description of Nuclei ℓ ′ q ℓ Develop a comprehensive theory that describes quantitatively and predictably all nuclear structure and reactions * Accurate understanding of interactions between nucleons, p ’s and n ’s * and between e ’s, ν ’s, DM , ... , with nucleons, nucleons-pairs, ... H Ψ = E Ψ Ψ ( r 1 , r 2 , ..., r A , s 1 , s 2 , ..., s A , t 1 , t 2 , ..., t A ) Erwin Schr¨ odinger 6 / 78

  7. Nuclear Force These Days * 1930s Yukawa Potential * 1960–1990 Highly sophisticated meson exchange potentials * 1990s– Highly sophisticated Chiral Effective Field Theory based potentials π π π Hideki Yukawa Steven Weinberg * Contact terms: short-range 1 * One-pion-exchange: range ∼ m π 1 * Two-pion-exchange: range ∼ 2 m π 7 / 78

  8. Nuclear Interactions and the role of the ∆ Courtesy of Maria Piarulli * N3LO with ∆ nucleon-nucleon interaction constructed by Piarulli et al. in PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 with ∆ ′ s fits ∼ 2000 ( ∼ 3000) data up 125 (200) MeV with χ 2 /datum ∼ 1; * N2LO with ∆ 3-nucleon force fits 3 H binding energy and the nd scattering length υ 12 = ∑ υ p O 12 = [ 1 , σ 1 · σ 2 , S 12 , L · S , L 2 , L 2 σ 1 · σ 2 , ( L · S ) 2 ] ⊗ [ 1 , τ 1 · τ 2 ] 12 ( r ) O 12 ; p + operators 4 terms breaking charge independence 8 / 78

  9. Phenomenological aka Conventional aka Traditional aka Realistic Two- and Three- Nucleon Potentials Courtesy of Bob Wiringa * AV18 fitted up to 350 MeV, reproduces phase shifts up to ∼ 1 GeV * * IL7 fitted to 23 energy levels, predicts hundreds of levels * 9 / 78

  10. Nucleon-nucleon potential Aoki et al. Comput.Sci.Disc.1(2008)015009 CT = Contact Term ∗ - short-range; 1 OPE = One Pion Exchange - range ∼ m π ; 1 TPE = Two Pion Exchange - range ∼ 2 m π ∗ in practice CT’s in r -space are coded with representations of a δ -function ( e.g. , a Gaussian function), or special functions such as Wood-Saxon functions 10 / 78

  11. ρ , ω , σ -exchange The One Boson Exchange (OBE) Lagrangians scalar − g S 0 ¯ − g S 1 ¯ ψψφ S 0 ψτψ · � φ S 1 pseudo-scalar − ig PS 0 ¯ − ig PS 1 ¯ ψγ 5 ψφ PS 0 ψγ 5 τψ · � φ PS 1 vector − g V 0 ¯ ψγ µ ψφ V 0 µ − g V 1 ¯ ψγ µ τψ · � φ V 1 µ tensor − g T 0 − g T 1 ψσ µν ψ∂ ν φ T 0 ψσ µν τψ · ∂ ν � φ T 1 2 m T 0 ¯ 2 m T 1 ¯ µ µ slide from my 15 mins HUGS talk... 11 / 78

  12. CD Bonn Potential g 2 g T J π Mass (MeV) I 4 π g V π ± 0 − 139.56995 1 13.6 PS 1 0 − π 0 134.9764 1 13.6 PS 1 0 − η 547.3 0 0.4 PS 0 ρ ± , ρ 0 1 − 769.9 1 0.84 6.1 V 1; T 1 1 − ω 781.94 0 20.0 0.0 V 0; T 0 0 + σ 400-1200 0 S 0 R.Machleidt, Phys.Rev. C 63 , 014001 (2001) O 12 = [ 1 , σ 1 · σ 2 , S 12 , L · S ] ⊗ [ 1 , τ 1 · τ 2 ] vs O 12 = [ 1 , σ 1 · σ 2 ] ⊗ [ 1 , τ 1 · τ 2 ] ; S 12 from2 π − exchange slide from my 15 mins HUGS... 12 / 78

  13. Nucleon-Nucleon Potential and the Deuteron M = ± 1 M = 0 Carlson and Schiavilla Rev.Mod.Phys.70(1998)743 13 / 78

  14. Quantum Monte Carlo Methods ℓ ′ q ℓ Solve numerically the many-body problem H Ψ = E Ψ Ψ ( r 1 , r 2 , ..., r A , s 1 , s 2 , ..., s A , t 1 , t 2 , ..., t A ) Ψ are spin-isospin vectors in 3 A dimensions with 2 A × A ! Z ! ( A − Z ) ! components 4 He : 96 6 Li : 1280 8 Li : 14336 12 C : 540572 14 / 78

  15. Variational Monte Carlo (VMC) Minimize expectation value of H = T + AV18 + IL7 E V = � Ψ V | H | Ψ V � ≥ E 0 � Ψ V | Ψ V � using trial function � �� � S ∏ ( 1 + U ij + ∑ ∏ | Ψ V � = U ijk ) f c ( r ij ) | Φ A ( JMTT 3 ) � i < j k � = i , j i < j * single-particle Φ A ( JMTT 3 ) is fully antisymmetric and translationally invariant * central pair correlations f c ( r ) keep nucleons at favorable pair separation * pair correlation operators U ij reflect influence of υ ij (AV18) * triple correlation operators U ijk reflect the influence of V ijk (IL7) Lomnitz-Adler, Pandharipande, and Smith NPA361(1981)399 Wiringa, PRC43(1991)1585 15 / 78

  16. Green’s function Monte Carlo (GFMC) Ψ V can be further improved by “filtering” out the remaining excited state contamination Ψ ( τ ) = exp [ − ( H − E 0 ) τ ] Ψ V = ∑ exp [ − ( E n − E 0 ) τ ] a n ψ n n Ψ ( τ → ∞ ) = a 0 ψ 0 In practice, we evaluate a “mixed” estimates � O ( τ ) � = f � Ψ ( τ ) | O | Ψ ( τ ) � i Mixed + � O ( τ ) � f ≈ � O ( τ ) � i Mixed −� O � V � Ψ ( τ ) | Ψ ( τ ) � Mixed = f � Ψ V | O | Ψ ( τ ) � i f � Ψ ( τ ) | O | Ψ V � i ; � O ( τ ) � f � O ( τ ) � i Mixed = f � Ψ V | Ψ ( τ ) � i f � Ψ ( τ ) | Ψ V � i Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC 56 , 1720 (1997) Wiringa, Pieper, Carlson, & Pandharipande, PRC 62 , 014001 (2000) Pieper, Wiringa, & Carlson, PRC 70 , 054325 (2004) 16 / 78

  17. GFMC Energy calculation: An example -20 8 Be(3 + ) 8 Be(1 + ) 8 Be(4 + ) 8 Be(2 + ) -30 8 Be(gs) E( τ ) (MeV) -40 Fig. 6 (Wiringa, et al.) -50 0 0.05 0.1 0.15 0.2 τ (MeV -1 ) Wiringa et al. PRC62(2000)014001 17 / 78

  18. Spectra of Light Nuclei Carlson et al. Rev.Mod.Phys.87(2015)1067 18 / 78

  19. Spectra of Light Nuclei M. Piarulli et al. - arXiv:1707.02883 * one-pion-exchange physics dominates * * it is included in both chiral and “conventional” potentials * 19 / 78

  20. Three-body forces A υ ij + ∑ ∑ t i + ∑ H = T + V = V ijk + ... i = 1 i < j i < j < k V ijk ∼ ( 0 . 2 − 0 . 9 ) υ ij ∼ ( 0 . 15 − 0 . 6 ) H υ π ∼ 0 . 83 υ ij 10 B VMC code output Ti + Vij = -38.2131 (0.1433) + Vijk = -46.7975 (0.1150) Ti = 290.3220 (1.2932) Vij =-328.5351 (1.1983) Vijk = -8.5844 (0.0892) Two-body physics dominates! 20 / 78

  21. (Very) Incomplete List of Credits and Reading Material ∗ Pieper and Wiringa; Ann.Rev.Nucl.Part.Sci.51(2001)53 ∗ Carlson et al. ; Rev.Mod.Phys.87(2015)1067 ∗ van Kolck et al. ; PRL72(1994)1982-PRC53(1996)2086 ∗ Kaiser, Weise et al. ; NPA625(1997)758-NPA637(1998)395 ockle, Meissner ∗ ; RevModPhys81(2009)1773 and references therein ∗ Epelbaum, Gl¨ ∗ Entem and Machleidt ∗ ; PhysRept503(2011)1 and references therin * NN Potentials suited for Quantum Monte Carlo calculations * ∗ Pieper and Wiringa; Ann.Rev.Nucl.Part.Sci.51(2001)53 ∗ Gezerlis et al. and Lynn et al. ; PRL111(2013)032501,PRC90(2014)054323,PRL113(2014)192501 ; ∗ Piarulli et al. ; PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 21 / 78

  22. Summary: Nuclear Interactions * The Microscopic description of Nuclei is very successful * Nuclear two-body forces are constrained by large database of nucleon-nucleon scattering data * Intermediate– and long–range components are described in terms of one- and two-pion exchange potentials * Short-range parts are described by contact terms or special functions * Due to a cancellation between kinetic and two-body contribution, three-body potentials are (small but) necessary to reach (excellent) agreement with the data * Calculated spectra of light nuclei are reproduced within 1 − 2% of expt data * Two-body one-pion-exchange contributions dominate and are crucial to explain the data 22 / 78

Recommend


More recommend