silicon sensors for high radiation tracking detectors
play

Silicon Sensors for High-Radiation Tracking Detectors- RD50 Status - PowerPoint PPT Presentation

Silicon Sensors for High-Radiation Tracking Detectors- RD50 Status Report A. Junkes for the RD50 Collaboration 8 th International Hiroshima Symposium December 5 th to 8 th 2011 Taipei, Taiwan RD50 The RD50 collaboration Development of


  1. Silicon Sensors for High-Radiation Tracking Detectors- RD50 Status Report A. Junkes for the RD50 Collaboration 8 th International “Hiroshima” Symposium December 5 th to 8 th 2011 Taipei, Taiwan

  2. RD50 The RD50 collaboration Development of Radiation Hard Semiconductor RD50 Devices for High Luminosity Colliders 39 European and Asian institutes Belarus (Minsk), Belgium (Louvain), Czech Republic (Prague (3x)), Finland (Helsinki, Lappeenranta), Germany (Dortmund, Erfurt, Freiburg, Hamburg, Karlsruhe, Munich), Italy (Bari, Florence, Padova, Perugia, Pisa, Trento), Lithuania (Vilnius), Netherlands (NIKHEF), Norway (Oslo (2x)), Poland (Warsaw(2x)), Romania (Bucharest (2x)), Russia (Moscow, St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona (2x), Santander, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Glasgow, Liverpool) 8 North-American institutes Canada (Montreal), USA (BNL, Fermilab, New Mexico, Purdue, Rochester, Santa Cruz, Syracuse) 1 Middle East institute Israel (Tel Aviv) 255 Members from 48 Institutes A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 2

  3. RD50 Scientific Organization of RD50 Co-Spokespersons Gianluigi Casse and Michael Moll Liverpool University CERN PH-DT Defect / Material Detector New Structures Full Detector http://rd50.web.cern.ch/rd50/ Characterization Characterization Systems Richard Bates Mara Bruzzi Eckhart Fretwurst Gregor Kramberger ( Glasgow University) (INFN & Uni Florence) (Hamburg University) ( Ljubljana University) • LHC-like tests Characterization of • Characterization of test • 3D detectors • Test beams structures (IV, CV, CCE, TCT,.) • Thin detectors microscopic properties • Links to HEP • Development and testing of • Cost effective solutions of standard-, defect defect engineered silicon devices • Links electronics R&D • Other new structures engineered and new • EPI, MCZ and other materials • Comparison: materials pre- and post- • NIEL - pad-mini-full detectors irradiation • Device modeling - different producers • 3D (R.Bates) • Operational conditions • Semi 3D (Z.Li) • Common irradiations • Pixel Europe (T.Rohe) • Thinned detectors • WODEAN: Workshop • Pixel US (D.Bortoletto) (M.Boscardin) • New Materials (E.Verbitskaya) on Defect Analysis in • Wafer procurement (M.Moll) Silicon Detectors • Simulations (??) (G.Lindstroem) CERN contact: Michael Moll A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 3

  4. Overview • Motivation: Radiation induced damage ➔ Depletion voltage, Ieakage current, trapping • Defect investigations: Effective doping concentration • Approaches: CMS Si upgrade campaign with • Hamamatsu Photonics • Prospects of conventional planar sensors ➔ Pixel • Fancy and new: ➔ Charge Multiplication ➔ 3D Detectors • Conclusions A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 4

  5. Motivation Expected HL-LHC fluences L int =3000 fb -1 @14 TeV Radiation hardness requirements for: -Innermost Pixels Φ eq ≈ 2x10 16 cm -2 - Innermost Strips Φ eq ≈1x10 15 cm -2 S. Müller, PhD thesis, KIT, 2011 Pixels Strips Note: Particle Fluences are shown! A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 5

  6. Motivation Expected HL-LHC fluences L int =3000 fb -1 @14 TeV Radiation hardness requirements for: Pion damage -Innermost Pixels dominant Φ eq ≈ 2x10 16 cm -2 - Innermost Strips Φ eq ≈1x10 15 cm -2 Neutron damage dominant S. Müller, PhD thesis, KIT, 2011 Pixels Strips Note: Particle Fluences are shown! A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 5

  7. Radiation damage Radiation damage in silicon • Surface damage (via Ionizing Energy Loss) • Crystal (bulk) damage (Non Ionizing Energy Loss) A.Junkes, PhD thesis, Uni Hamburg 2011 Damage in the crystal Defects composed of: I V acancies and I nterstitials V Compound defects with impurities possible! Formation of point defects and „cluster“ defects Simulation of 50 keV PKA Introduction of new levels in band gap damage cascade (1 MeV n) A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 6

  8. Radiation damage Change of detector properties Determined by Shockley-Read-Hall statistics shallow deep shallow Charged defects (at RT) Deep defects Levels close to midgap ➔ N eff , V dep ➔ CCE ➔ I dep (NOISE) ➔ Cooling during operation helps! (Acceptors in the lower half (Shallow defects do and donors in the upper half not contribute due of the band gap) to fast detrapping) A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 7

  9. Radiation damage Change of depletion voltage With Φ (p-in-n Float Zone Si, neutrons): V dep = q 0 ⋅ N eff ⋅ d 2 εε 0 • Acceptors compensate original doping • Type inversion from n- to p-type • Increase of depletion voltage after Space Charge Sign Inversion ➔ Detector becomes p-in-p ➔ p-n-junction from wrong side ➔ Loss of resolution R. Wunstorf, PhD thesis 1992, Uni Hamburg A. Junkes • Need depletion from strip-side! • Change of N eff depends on material! ➔ Needs prediction of N eff for ➔ specific material A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 8

  10. Radiation damage Change of leakage current … depending on the fluence ∆ I = α ⋅ V ⋅ Φ eq Deep defects act as generation centres • Increase of leakage current • Increase of shot noise • Increase of power dissipation • Risk of thermal runnaway 80min@60°C M.Moll PhD thesis ‘99 • Damage parameter α is a universal parameter ➔ So far not depending on Si material or particle type (N, H) ➔ Cooling necessary A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 9

  11. Radiation damage Trapping • Defects act as trapping centres ➔ Reduction of collected charge • Trapping dominant effect • at Φ >1x10 15 cm -2 • Effective trapping times for e - und h + • Trapping of e - und h + similar ➔ No influence of material seen But: • Collection time 3x smaller for e - ➔ Collect e - ! • Needs n-side read-out A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 10

  12. Overview • Motivation: Radiation induced damage ➔ Depletion voltage, Ieakage current, trapping • Defect investigations: Effective doping concentration • Approaches: CMS Si upgrade campaign with • Hamamatsu Photonics • Prospects of conventional planar sensors ➔ Pixel • Fancy and new: ➔ Charge Multiplication ➔ 3D Detectors • Conclusions A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 11

  13. Defect investigations Influence of material properties 10 14 D. Eckstein, 12 th RD50 Workshop Ljubljana, 2008 V fd (t 0 )[V] normalized to 100 µ m 23 GeV protons 23 GeV protons 700 N-type 8 . 10 13 Oxygen rich FZ 50 µ m 600 500 -3 ] 6 . 10 13 N eff (t 0 ) [cm 400 4 . 10 13 300 µ m FZ, 50 µ m FZ, 50 µ m 200 FZ, 100 µ m FZ, 100 µ m µ m 2 . 10 13 µ m MCz, 100 µ m MCz, 100 µ m 100 0 0 2 . 10 15 4 . 10 15 6 . 10 15 8 . 10 15 0 Φ Φ eq [cm -2 ] A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 12

  14. Defect investigations Influence of material properties Type inversion for 100 µ m FZ ✔ 10 14 D. Eckstein, 12 th RD50 Workshop Ljubljana, 2008 V fd (t 0 )[V] normalized to 100 µ m 23 GeV protons 23 GeV protons 700 N-type 8 . 10 13 Oxygen rich FZ 50 µ m 600 500 -3 ] 6 . 10 13 N eff (t 0 ) [cm 400 4 . 10 13 300 µ m FZ, 50 µ m FZ, 50 µ m 200 FZ, 100 µ m FZ, 100 µ m µ m 2 . 10 13 µ m MCz, 100 µ m MCz, 100 µ m 100 0 0 2 . 10 15 4 . 10 15 6 . 10 15 8 . 10 15 0 Φ Φ eq [cm -2 ] A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 12

  15. Defect investigations Influence of material properties Type inversion for 100 µ m FZ ✔ 10 14 D. Eckstein, 12 th RD50 Workshop Ljubljana, 2008 V fd (t 0 )[V] normalized to 100 µ m No type inversion for 100 µ m MCz ✔ 23 GeV protons 23 GeV protons 700 N-type 8 . 10 13 Oxygen rich FZ 50 µ m 600 500 -3 ] 6 . 10 13 N eff (t 0 ) [cm 400 4 . 10 13 300 µ m FZ, 50 µ m FZ, 50 µ m 200 FZ, 100 µ m FZ, 100 µ m µ m 2 . 10 13 µ m MCz, 100 µ m MCz, 100 µ m 100 0 0 2 . 10 15 4 . 10 15 6 . 10 15 8 . 10 15 0 Φ Φ eq [cm -2 ] A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 12

  16. Defect investigations Influence of material properties Type inversion for 100 µ m FZ ✔ 10 14 D. Eckstein, 12 th RD50 Workshop Ljubljana, 2008 V fd (t 0 )[V] normalized to 100 µ m No type inversion for 100 µ m MCz ✔ 23 GeV protons 23 GeV protons 700 N-type No type inversion for 50 µ m FZ ✗ 8 . 10 13 Oxygen rich FZ 50 µ m 600 500 -3 ] 6 . 10 13 N eff (t 0 ) [cm 400 4 . 10 13 300 µ m FZ, 50 µ m FZ, 50 µ m 200 FZ, 100 µ m FZ, 100 µ m µ m 2 . 10 13 µ m MCz, 100 µ m MCz, 100 µ m 100 0 0 2 . 10 15 4 . 10 15 6 . 10 15 8 . 10 15 0 Φ Φ eq [cm -2 ] A. Junkes, RD50 Status Report, HSTD-8, Taipei 05.12.2011 Hamburg University 12

Recommend


More recommend