exiting from qe by fumio hayashi and junko koeda
play

Exiting from QE by Fumio Hayashi and Junko Koeda Some comments - PowerPoint PPT Presentation

Exiting from QE by Fumio Hayashi and Junko Koeda Some comments from Mark Watson 1 Questions: How can we estimate effects of monetary policy when the policy instrument changes endogenously from the short term interest rate to QE?


  1. Exiting from QE by Fumio Hayashi and Junko Koeda Some comments from Mark Watson ¡ 1 ¡

  2. Questions: • How can we estimate effects of monetary policy when the policy instrument changes endogenously from the short term interest rate to QE? • How can we estimate the effect of changing instruments, i.e., exiting from QE? Answer: • Use standard recursive SVAR that allows for discrete breaks associated with changes in policy instruments. o Model breaks in terms of observables o Do some careful data work o Estimate parameters using appropriate methods (breaks, truncation associated with bounds). o Make some sensible empirical choices o Compute IRFs and counterfactuals using nonlinear methods. ¡ 2 ¡

  3. Models and VARs ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ X t Output gap Bank Rate ⎢ ⎥ , X t = t = Notation: ⎢ ⎥ and P ⎥ ⎢ ⎢ P ⎥ ⎢ ⎥ Excess Reserves ⎣ ⎦ Inflation ⎣ ⎦ ⎣ ⎦ t ( ) X ), η X , t ⎧ X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ ⎨ Model: ( ) t = f P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ Linearize model and solve ⎧ X t = Φ X t − 1 + Β P t − 1 + Γ XX η X , t + Γ XP η P , t ⎪ ⎨ SVAR: t = Λ X t − 1 + Ψ P t − 1 + Γ PX η X , t + G PP η P , t P ⎪ ⎩ ¡ 3 ¡

  4. 2 Models ( ) X ), η X , t ⎧ X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ ⎨ Model 0: ( ) t = f 0, P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ ( ) X ), η X , t ⎧ X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ ⎨ Model 1: ( ) t = f 1, P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ ⎧ X t = Φ 0 X t − 1 + Β 0 P t − 1 + Γ 0, XX η X , t + Γ 0, XP η P , t ⎪ ⎨ SVAR 0: t = Λ 0 X t − 1 + Ψ 0 P t − 1 + Γ 0, PX η X , t + G 0, PP η P , t P ⎪ ⎩ ⎧ X t = Φ 1 X t − 1 + Β 1 P t − 1 + Γ 1, XX η X , t + Γ 1, XP η P , t ⎪ ⎨ SVAR 1: t = Λ 1 X t − 1 + Ψ 1 P t − 1 + Γ 1, PX η X , t + G 1, PP η P , t P ⎪ ⎩ ¡ 4 ¡

  5. 1 Model, 2 Regimes ( s t = 0 or s t = 1) ( ) X ), η X , t ⎧ X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ Model( s t = 0): ⎨ ( ) t = f 0, P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ ( ) X ), η X , t ⎧ X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ Model( s t = 1): ⎨ ( ) t = f 1, P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ ⎧ X t = Φ 0 X t − 1 + Β 0 P t − 1 + Γ 0, XX η X , t + Γ 0, XP η P , t ⎪ SVAR( s t = 0): ?? ⎨ t = Λ 0 X t − 1 + Ψ 0 P t − 1 + Γ 0, PX η X , t + G 0, PP η P , t P ⎪ ⎩ ⎧ X t = Φ 1 X t − 1 + Β 1 P t − 1 + Γ 1, XX η X , t + Γ 1, XP η P , t ⎪ SVAR( s t = 1): ?? ⎨ t = Λ 1 X t − 1 + Ψ 1 P t − 1 + Γ 1, PX η X , t + G 1, PP η P , t P ⎪ ⎩ ¡ 5 ¡

  6. t + 1 , … | Ω t ) What matters: E ( P t , X t + 1 , P which depends on forecasts of s t , s t +1 , s t +2 , s t +3 , … ( ) = P s t + k s t { } j ≥ 1 ( ) A special case: P s t + k s t , X t , P t , s t − j , X t − j , P t − j That is, s t is an exogenous first-order Markov process ¡ 6 ¡

  7. ( ) = P s t + k s t { } j ≥ 1 ( ) Special Case: P s t + k s t , X t , P t , s t − j , X t − j , P t − j ( ) ⎧ X ), η X , t X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ ⎪ ( ) t = f ( s t = 0), P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎨ Model: P t − 1 , E ( P t , X t + 1 , P ⎪ ( ) t = f ( s t = 1), P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ X = Ω t Suppose Ω t P (and both include s t ). Things are simple ⎧ X t = Φ 0 X t − 1 + Β 0 P t − 1 + Γ 0, XX η X , t + Γ 0, XP η P , t ⎪ SVAR( s t = 0): ⎨ t = Λ 0 X t − 1 + Ψ 0 P t − 1 + Γ 0, PX η X , t + G 0, PP η P , t P ⎪ ⎩ ⎧ X t = Φ 1 X t − 1 + Β 1 P t − 1 + Γ 1, XX η X , t + Γ 1, XP η P , t ⎪ SVAR( s t = 1): ⎨ t = Λ 1 X t − 1 + Ψ 1 P t − 1 + Γ 1, PX η X , t + G 1, PP η P , t P ⎪ ⎩ ¡ 7 ¡

  8. Suppose Ω t X includes s t − 1 but not s t Ω t P include s t ⎧ X t = Φ 0,0 X t − 1 + Β 0,0 P t − 1 + Γ 0,0, XX η X , t + Γ 0,0, XP η P , t ⎪ SVAR( s t = 0, s t − 1 = 0): ⎨ t = Λ 0,0 X t − 1 + Ψ 0,0 P t − 1 + Γ 0,0, PX η X , t + G 0,0, PP η P , t P ⎪ ⎩ ⎧ X t = Φ 1,0 X t − 1 + Β 1,0 P t − 1 + Γ 1,0, XX η X , t + Γ 1,0, XP η P , t ⎪ SVAR( s t = 1, s t − 1 = 0): ⎨ t = Λ 1,0 X t − 1 + Ψ 1,0 P t − 1 + Γ 1,0, PX η X , t + G 1,0, PP η P , t P ⎪ ⎩ ⎧ X t = Φ 0,1 X t − 1 + Β 0,1 P t − 1 + Γ 0,1, XX η X , t + Γ 0,1, XP η P , t ⎪ SVAR( s t = 0, s t − 1 = 1): ⎨ t = Λ 0,1 X t − 1 + Ψ 0,1 P t − 1 + Γ 0,1, PX η X , t + G 0,1, PP η P , t P ⎪ ⎩ ⎧ X t = Φ 1,1 X t − 1 + Β 1,1 P t − 1 + Γ 1,1, XX η X , t + Γ 1,1, XP η P , t ⎪ SVAR( s t = 1, s t − 1 = 1): ⎨ t = Λ 1,1 X t − 1 + Ψ 1,1 P t − 1 + Γ 1,1, PX η X , t + G 1,1, PP η P , t P ⎪ ⎩ ¡ 8 ¡

  9. Truth: SVAR( s t = 0, s t − 1 = 0), SVAR( s t = 0, s t − 1 = 1), SVAR( s t = 1, s t − 1 = 0),SVAR( s t = 1, s t − 1 = 1) Estimate: SVAR( s t = 0) , SVAR( s t = 1) model. What will I find ? SV AR( s t = 0) will be a mixture of SVAR( s t = 0, s t − 1 = 0), SVAR( s t = 0, s t − 1 = 1) SVAR( s t = 1) will be a mixture of SVAR( s t = 1, s t − 1 = 0), SVAR( s t = 1, s t − 1 = 1) but P ( s t = 0, s t − 1 = 0) ≫ P ( s t = 0, s t − 1 = 1), so SVAR( s t = 0) ≈ SVAR( s t = 0, s t − 1 = 0) P ( s t = 1, s t − 1 = 1) ≫ P ( s t = 1, s t − 1 = 0), so SVAR( s t = 1) ≈ SVAR( s t = 1, s t − 1 = 1) ¡ 9 ¡

  10. Some questions for this misspecified model (1) IRFs of Policy variables under s = 1 ( R – shocks) or s = 0 ( m – shocks) SVAR( s t = 1) ≈ SVAR( s t = 1, s t − 1 = 1) SVAR( s t = 0) ≈ SVAR( s t = 0, s t − 1 = 0) Approximately correct “continuing regime” answers. ¡ 10 ¡

  11. (2) Counterfactual “Exit from Regime” s t s t +1 s t +2 s t − 1 Factual 0 1 1 1 Counterfactual 0 0 1 1 Correct Answers from t − 1 t t + 1 t + 2 Factual SVAR( s t = 1, s t − 1 = 0) SVAR( s t = 1, s t − 1 = 1) Counterfactual SVAR( s t = 0, s t − 1 = 0) SVAR( s t = 0, s t − 1 = 1) Misspecfied Model Answers from t − 1 t t + 1 t + 2 Factual SVAR( s t = 1, s t − 1 = 1) SVAR( s t = 1, s t − 1 = 1) Counterfactual SVAR( s t = 0, s t − 1 = 0) SVAR( s t = 1, s t − 1 = 1) ¡ 11 ¡

  12. ( ) = P s t + k s t { } j ≥ 1 ( ) Special Case: P s t + k s t , X t , P t , s t − j , X t − j , P t − j Hyashi-Koeda: ( ) + (1 − ρ ) r s t − 1 = 0, ρ r * X t , … , X t − 11 ⎧ ⎧ t − 1 > r t > 0 and π t > q t ∼ N ( π , σ 2 ) ⎪ ⎪ ⎨ s t = 1 if ( ) + (1 − ρ ) r s t − 1 = 1, ρ r * X t , … , X t − 11 t − 1 > r t > 0 ⎨ ⎪ ⎩ ⎪ ⎩ 0 otherwise ( ) ⎧ X ), η X , t X t = f X X t − 1 , P t + 1 , … | Ω t t − 1 , E ( P t , X t + 1 , P ⎪ ⎪ ( ) t = f ( s t = 0), P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎨ Model: P t − 1 , E ( P t , X t + 1 , P ⎪ ( ) t = f ( s t = 1), P X t − 1 , P t + 1 , … | Ω t P ), η P , t ⎪ P t − 1 , E ( P t , X t + 1 , P ⎩ SVAR … more complicated (!) Approximations: SVAR( s t = 0) and SVAR( s t = 1) are averages over these regimes ¡ 12 ¡

  13. Data: 30000 20000 10000 0 -10000 -20000 -30000 -40000 -50000 -60000 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Output Gap ¡ 13 ¡

  14. 4 3 2 1 0 -1 -2 -3 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Inflation ¡ 14 ¡

  15. 10 8 6 4 2 0 -2 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 R-RBar ¡ 15 ¡

  16. 200 175 150 125 100 75 50 25 0 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Excess Reserves ¡ 16 ¡

  17. Approximations: SVAR( s t = 0) and SVAR( s t = 1) are averages over these regimes (1) IRFs of Policy variables under s = 1 ( R – shocks) or s = 0 ( m – shocks) (2) Counterfactual “Exit from Regime” s t s t +1 s t +2 s t − 1 Factual 0 1 1 1 Counterfactual 0 0 1 1 ¡ 17 ¡

Recommend


More recommend