exchangeable random measures
play

EXCHANGEABLE RANDOM MEASURES BY F. C ARON AND E. B. F OX Benjamin - PowerPoint PPT Presentation

D ISCUSSION OF S PARSE GRAPHS USING EXCHANGEABLE RANDOM MEASURES BY F. C ARON AND E. B. F OX Benjamin Bloem-Reddy http://www.columbia.edu/~bmr2136/ Columbia University Royal Statistical Society, London May 10, 2017 Edge exchangeable


  1. D ISCUSSION OF ‘S PARSE GRAPHS USING EXCHANGEABLE RANDOM MEASURES ’ BY F. C ARON AND E. B. F OX Benjamin Bloem-Reddy http://www.columbia.edu/~bmr2136/ Columbia University Royal Statistical Society, London May 10, 2017

  2. Edge exchangeable Exchangeable random measure D α ∼ CRM ( ρ, λ α ) E D ∗ α ∼ NCRM ( ρ, λ α ) 2 2 1.5 1.5 1 1 0.5 0.5 0 0 15 15 15 12 10 10 10 10 8 5 5 5 6 4 0 0 0 2 B. Bloem-Reddy 2 / 6

  3. Edge exchangeable Exchangeable random measure D α + ǫ | D α ∼ CRM ( ρ, λ [ α,α + ǫ ] ) E D ∗ α + ǫ | E D ∗ α ∼ NCRM ( ρ, λ α ) 2 4 1.5 3 1 2 0.5 1 0 0 30 20 25 15 20 20 20 15 10 15 10 10 10 5 5 5 0 0 0 0 B. Bloem-Reddy 3 / 6

  4. Edge exchangeable Exchangeable random measure D α + ǫ | D α ∼ CRM ( ρ, λ [ α,α + ǫ ] ) E D ∗ α + ǫ | E D ∗ α ∼ NCRM ( ρ, λ α ) 2 2 1.5 1.5 1 1 0.5 0.5 0 0 15 15 15 12 10 10 10 10 8 5 5 6 5 4 0 0 0 2 2 4 1.5 3 1 2 0.5 1 0 0 30 20 25 15 20 20 20 15 10 15 10 10 10 5 5 5 0 0 0 0 B. Bloem-Reddy 4 / 6

  5. Exchangeable random measure Edge exchangeable ◮ Growth: by a random number of ◮ Growth: one edge at a time. edges and vertices as α increases. ◮ Population of possible edges: grows ◮ Population of possible edges: fixed with α . (possibly infinite). ◮ Inserts no additional edges between ◮ Inserts additional edges between observed vertices w.p. 1. observed vertices w.p. 1. ◮ Caron and Fox (2017), Veitch and ◮ Crane and Dempsey (2015, 2016), Roy (2015, 2016), Borgs et al. Williamson (2016), Cai et al. (2016), (2016), Janson (2016). Janson (2017) B. Bloem-Reddy 5 / 6

  6. Borgs, Christian, Jennifer T. Chayes, Henry Cohn, and Nina Holden (2016). “Sparse exchangeable graphs and their limits via graphon processes”. In: arXiv: 1601.07134 [math.PR] . URL : http://arxiv.org/abs/1601.07134 . Cai, Diana, Trevor Campbell, and Tamara Broderick (2016). “Edge-exchangeable graphs and sparsity”. In: Advances in Neural Information Processing Systems 29 . Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates, Inc., pp. 4242–4250. Crane, Harry and Walter Dempsey (2015). “A framework for statistical network modeling”. In: arXiv: 1509.08185 [math.ST] . URL : https://arxiv.org/abs/1509.08185 . — (2016). “Edge exchangeable models for network data”. In: arXiv: 1603.04571 [math.ST] . URL : https://arxiv.org/abs/1603.04571 . Janson, Svante (2016). “Graphons and cut metric on sigma-finite measure spaces”. In: arXiv: 1608.01833 [math.CO] . URL : https://arxiv.org/abs/1608.01833 . — (2017). “On edge exchangeable random graphs”. In: eprint: 1702.06396 . URL : https://arxiv.org/abs/1702.06396 . Veitch, Victor and Daniel M. Roy (2015). “The Class of Random Graphs Arising from Exchangeable Random Measures”. In: arXiv: 1512.03099 [math.ST] . URL : http://arxiv.org/abs/1512.03099 . — (2016). “Sampling and Estimation for (Sparse) Exchangeable Graphs”. In: arXiv: 1611.00843 [math.ST] . URL : https://arxiv.org/abs/1611.00843 . Williamson, Sinead A. (2016). “Nonparametric Network Models for Link Prediction”. In: Journal of Machine Learning Research 17.202, pp. 1–21. B. Bloem-Reddy 6 / 6

Recommend


More recommend