energy range 0 10000 ev
play

energy range 0-10000 eV Gustavo Garca Instituto de Fsica - PowerPoint PPT Presentation

Evaluated electron and positron- molecule scattering data for modelling particle transport in the energy range 0-10000 eV Gustavo Garca Instituto de Fsica Fundamental Consejo Superior de Investigaciones Cientficas (IFF-CSIC) Madrid,


  1. Evaluated electron and positron- molecule scattering data for modelling particle transport in the energy range 0-10000 eV Gustavo García Instituto de Física Fundamental Consejo Superior de Investigaciones Científicas (IFF-CSIC) Madrid, Spain

  2. Modelling tools for molecular data validation • High energy (E>10 keV) primary radiation (photons, electrons and ions): GEometry ANd Tracking4 (GEANT4) • Low energy (E<10 keV) seconday particles (electrons, positrons and radicals): Low Energy Particle Track Simulation (LEPTS)

  3. Modelling procedure to validate interaction data in molecular media General MC Programme Interaction cross GEANT4 section data LEPTS Energy loss distribution GAMOS Code functions Architecture Angular distribution functions Source geometry Laboratory and emission spectra verification

  4. Input data • High energy photons and ions: (Literature: Evaluated Data Bases) • High energy (>10keV) electrons/positrons : (First Born approximation- Bethe surfaces) • Low energy electron, positrons and radicals : (Evaluated theoretical and experimental data- EPEDAT)

  5. Electron and positron evaluated data EPEDAT • Experimental sources: – Electron and positron scattering with molecules: CSIC, Flinders University (FU), Universidade Nova de Lisboa (UNL), Sophia University (SU), Australian National University (ANU) – Electron transfer to molecules: CSIC, New University of Lisbon (UNL) • Thoretical methods: – Electron and positron scattering with molecules: CSIC (IAM-SCAR), Open University (R-matrix), University of Innsbruck (Single-Centre Expansion)

  6. Beam-gas experiments-1 Total cross cections (5-7%) Ionisation cross section (7-10%) VUV spectrometer Partial ionisation (10-20%) Neutral dissociation (25-40%) Energy loss (forward dir.) (10%) MCP-3 e-spectrometer e-monochromator Gas cell TOF spectrometer MCP-1 e-gun CSIC-Madrid MCP-2

  7. Beam-gas experiments-2 e/p magnetically confined beam Differential and integral cross section measurements ANU-Canberra (p) CSIC-Madrid (e)

  8. Crossed-beam experiments-1 Differential cross cections - Elastic (10-20%) e-spectrometer -Inelastic (20-40%) Energy loss (angular) (10-20%) Molecular beam MCP-1 MCP-2 FU-Adelaide UL-Liège SU-Tokyo e-gun e- monochromator

  9. Crossed-beam experiments-2 electron transfer induced dissociation MCP-2 No absolute cross section values TOF-2 Hollow cathode discharge Supersonic TOF-1 valve MCP-1 TOF-3 CSIC-Madrid MCP-3 UNL-Lisbon

  10. Calculations Electron and positron scattering in molecular and condensed media • Atoms: Model potential representation, • Molecules: – Independent atom model (IAM), Aditivity rule (AR) with screening corrections (SCAR) and interference terms – Additional dipole rotational excitations (FBA) • Condensation effects: Atomic and molecular clusters, liquids, solids (IAM-SCAR) • Low energy (< 20 eV) extension : Single-Centre Expansion and R-Matrix procedures

  11. Atoms e - +  p + Electrons: V( r )= V st ( r )+V ex ( r )+V pol ( r )+i[V abs ( r )] Positrons: V( r )= V st ( r )+V pol ( r )+i[V abs ( r )+ V ps ( r) ]

  12. Calculations Electron and positron scattering in molecular and condensed media • Atoms: Model potential representation, • Molecules: – Independent atom model (IAM), Aditivity rule (AR) with screening corrections (SCAR) and interference terms – Additional dipole rotational excitations (FBA) • Condensation effects: Atomic and molecular clusters, liquids, solids (IAM-SCAR) • Low energy (< 20 eV) extension : Single-Centre Expansion and R-Matrix procedures

  13. Molecules Differential cross sections  elastic sin qr sin qr d                   2    * ij * ij molecule f f f f f  i j i i j d qr qr  i , j i i j ij ij Integral cross sections       total total interferen ce molecule atom i atoms *  sin qr           ij interferen ce d f f i j qr  i j ij

  14. Calculations Electron and positron scattering in molecular and condensed media • Atoms: Model potential representation, • Molecules: – Independent atom model (IAM), Aditivity rule (AR) with screening corrections (SCAR) and interference terms – Additional dipole rotational excitations (FBA) • Condensation effects: Atomic and molecular clusters, liquids, solids (IAM-SCAR) • Low energy (< 10 eV) extension : Single-Centre Expansion and R-Matrix procedures

  15. Condensed matter  eff  c eff  ij  i  i High  Intermediate  Low Energy Corrective factor: s =  eff /  =[1+(  c /  ) p ] 1/ p P=-21  0,5% convergence

  16. Calculations Electron and positron scattering in molecular and condensed media • Atoms: Model potential representation, • Molecules: – Independent atom model (IAM), Aditivity rule (AR) with screening corrections (SCAR) and interference terms – Additional dipole rotational excitations (FBA) • Condensation effects: Atomic and molecular clusters, liquids, solids (IAM-SCAR) • Low energy (< 10 eV) extension : Single-Centre Expansion and R-Matrix procedures

  17. IAM-SCAR (H 2 O) 3 cluster water Liquid water e - , e + -track H 2 O molecule

  18. Some examples of calculations Differential elastic scattering cross sections e-GeF 4  Experimental data from H. Tanaka (SU Tokyo)  IAM-SCAR calculation

  19. Some examples of calculations Total electron scattering cross sections e-CH 4

  20. Example of input data Three main classes of input data are needed: 2. Energy loss 3. Angular 1. Scattering CS distrib. functions distrib. functions 1 10 100 Cross section [10 -20 m 2 ] 10 Intensity 0 10 Elastic DCS (10 -20 m 2 ) 1 0.1 sub-1eV -1 10 2 eV 0.01 5 eV 15 eV 40 eV 100 eV 0.001 300 eV 1 keV -2 10 10 keV 0.0001 0 20 40 60 80 100 120 140 160 180 5 10 15 20 25 30 35 40 45 -1 0 1 2 3 4 Angle 10 10 10 10 10 10 Energy loss [eV] Energy [eV] Uncertainties: 5-20% 10-20% 10-20%

  21. Integral CS: 0.1 eV – 10 keV total cross section example: methane elastic collision 1. Scattering CS ionization Electronic excitation rotational excitation • Total scattering CS (5-7%) DEA neutral dissociation 1 10 Energy [eV] • Integral CS for: vibrational excitation Cross section [10 -20 m 2 ] – elastic scattering (10-15%) – Ionization (7-10%) – electronic excitation (20%) 0 10 – vibrational excit. (20%) – rotational excit. (10-15%) – neutral dissociation (25%) – DEA (10-15%) -1 10 – self-consistency: Σ int. CS = total CS • CS table is compiled from typically  15 different -2 10 sources! -1 0 1 2 3 4 10 10 10 10 10 10 Energy [eV]

  22. Differential CS 0° -180° 3. Angular distrib. functions example: methane  Elastic DCS Elastic DCS [10 -20 m 2 ] 1  Tabulated values from 0° to 180° on a 1° grid from  6 sources  Data from experimental sources are extrapolated 1 eV 0,01 towards 0° and 180° 2 eV 5 eV  Inelastic DCS 15 eV  Aim: tabulated form, 50 eV 0°-180° 200 eV  present source: 700 eV 0,0001 0 20 40 60 80 100 120 140 160 180 approximation by 3 keV empirical formula Angle [degrees] 10 keV     2 d ( E ) d ( E )      1 E / E      d d E d el

  23. e-Furfural Energy loss distribution function Electronic Ionisation Vbrational O N

  24. Current state of the Madrid data collection Molecules currently included: Processes currently included: – Water (e, p) – elastic scattering – ionization, Auger e- generation – Argon (e,p) – vibrational and rotational – Nitrogen, Oxygen (e,p) excitation (average of existing states) – Methane (e) – electronic excitation (all states – Ethylene (e) according to EEL spectra) – neutral dissociation – Tetrahydrofuran (e) – dissociative electron – Sulphur hexafluoride (e) attachment – positronium formation – Pyrimidine (e, p) – annihilation – Furfural (e)

  25. Example: 10keV electrons through furfural

  26. Importance of energy loss uncertainties

  27. Importance of elastic scattering

  28. Particle transport data evaluation: 20 eV magnetically confined electrons transmitted through 140 mm length gas (3 mTorr furfural pressure) cell B RFA 140 mm B B g

  29. Particle transport data evaluation: 20 eV magnetically confined electrons transmitted through 140 mm length gas (3 mTorr furfural pressure) cell Low angle DCS uncertainties Rotational cooling and high angle DCS

  30. Acknowledgements • Madrid Group: F. Blanco, A. Muñoz, L. Ellis- Gibbings • Lisbon (UNL): P. Limão-Vieira, F. Ferreira • Flinders University (Adelaide): M. Brunger • ANU (Canberra): S. Buckman, R. McEachran • J. Cook University (Townsville): R. White • IOP (Belgrade): B. Marinkovic, Z. Petrovic • Open University (UK): J. Gorfinkiel • Innsbruck University: F. Gianturco • Sherbrooke University: L. Sanche

Recommend


More recommend