energy geotechnology
play

ENERGY GEOTECHNOLOGY Mixed Fluid Conditions J. Carlos Santamarina - PowerPoint PPT Presentation

UNSAT 2010 - Barcelona ENERGY GEOTECHNOLOGY Mixed Fluid Conditions J. Carlos Santamarina and Jaewon Jang energy geotechnology Energy in the News Deepwater Horizon Explosion: 4/20/10 (@10 pm) Oil slick: 5/6/10 Sinks: 4/22/10 (~10 am) Energy and


  1. UNSAT 2010 - Barcelona ENERGY GEOTECHNOLOGY Mixed Fluid Conditions J. Carlos Santamarina and Jaewon Jang

  2. energy geotechnology

  3. Energy in the News Deepwater Horizon Explosion: 4/20/10 (@10 pm) Oil slick: 5/6/10 Sinks: 4/22/10 (~10 am)

  4. Energy and Life (Global: 2008) 1.0 Human Development Index 0.8 0.6 0.4 0.2 0.0 0.01 0.10 1.00 10.00 Total power per person [kW/person] CIA, UN, EIA

  5. Energy and Life (Global: 2008 – BRIC trends: 1980-2007) 1.0 1 billion USA Human Development Index 0.8 Russia Brazil 0.6 China India 0.4 0.2 0.0 0.01 0.10 1.00 10.00 Total power per person [kW/person] CIA, UN, EIA Countries following the same trend: P   HDI 

  6. Sources – Case: USA 2008 LLNL – DOE Units: [QUADS] Efficiency in geotechnology? crushing<5% tunneling<< ants!

  7. Geo-Centered Perspective: Time Scale 4.5 B 4 By 3 By 2 By 1 By 0

  8. 4.5 B 4 By 3.5 BYA: bacteria 3 By 2.5 BYA: O 2 atmosph 2 By 1.5 BYA: plants 1 By coal & petrol 230-65 MYA: dinosaurs 0

  9. 4.5 B 4 By 3 By 2 By 1 By 0 10 My 8 My 6 My 4 My 2 My 0 My

  10. 4.5 B 4 By 3 By 2 By 1 By 0 10 My 8 My 6 My 4 My 2 My 0 My 380 Fedorov et al 2006 CO 2 300 220 8 o C T 400k 300k 200k 100k 0k

  11. 4.5 B 4 By 3 By 2 By 1 By 0 10 My 8 My 6 My 4 My 2 My 0 My -6000 yr -4000 yr -2000 yr 0 2000 yr History of fossil fuels: a  -function

  12. 2050 2.5 2 500 1.5 CO 2 (ppm) 400 Temp anomaly ( o C) 1 0.5 300 0 200 -0.5 1000 1200 1400 1600 1800 2000 Year -6000 yr -4000 yr -2000 yr 0 2000 yr Global implications

  13. Geo-Centered Perspective: Spatial Scale CO 2 C Fossil Fuel: ~90%

  14. Energy Geotechnology FOSSIL FUELS (C-BASED) RENEWABLE Nuclear Wind Solar Biofuels Petroleum Gas Coal Geo-T Tidal • fines & clogging • sand production • gas hydrates • engineered soils • shale instability • gas storage • characterization • periodic load • decommission • EOR • low-T LNG found. • optimal extraction • ratcheting • leak detect • heavy oil & tar sand • subsurface conv. • leak repair • mixed fluid flow, percolation • contact angle & surface tension = f(u a ) GEOLOGICAL STORAGE CO 2 sequestration Energy Storage Waste storage 10 4 -10 5 yr BTHCM CAES, phase-change mineral dissolution  shear faults, pipes Cyclic HTCM 10 5 yr BTHCM GEO-ENVIRONMENTAL REMEDIATION CONSERVATION  Hydro-electric : capacity almost saturated

  15. Energy Geotechnology: Phases Gas water vapor CO 2 CH 4 supercritical CO 2 Liquid water CO 2 oil Solid mineral ice CO 2 hydrate CH 4 hydrate

  16. Summary: Energy Geotechnology Current development patterns: HDI  Energy Quality of life 15.6 TW – increasing at ~1% per year Current Fossil fuels Stored solar energy (1 billion years in the making) C-Economy: ~300 years Short-term: C-emissions  Climate (global) Fossil fuels more sustainable … but… CO 2 storage Energy resource recovery production Geotechnology energy storage waste storage efficiency Wide range of multi-phase conditions

  17. CH 4 hydrates

  18. Hydrates (clathrate = cage) H 2 O CH 4

  19. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 4 2 0 265 270 275 280 285 290 Temperature [K]

  20. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 H+I H+W H+G H+G 4 I+G 2 W+G I+G 0 265 270 275 280 285 290 Temperature [K]

  21. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 H+W I+G H+G 4 2 W+G I+G 0 265 270 275 280 285 290 Temperature [K]

  22. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 H+I H+W H+G H+G 4 2 W+G I+G 0 265 270 275 280 285 290 Temperature [K]

  23. Methane Hydrate - Occurrence (Kvenvolden and Lorenson, 2001)

  24. Hydrate – Key Observations CH 4 solubility in H 2 O CH 4 : 750 H 2 O CH4 concentration in hydrate CH 4 : 6 H 2 O formation: CH 4 diffusion ~1 x 10 -9 m 2 /s Diffusivity CH 4 in water ~5 x 10 -13 m 2 /s hydrate Ice  water V w / V ice =0.92 production Hydrate  (water+CH 4 gas ) V w+g / V hyd = 1 to >6

  25. Fluid Volume Expansion  V V   W G V hy d 50 Nankai Trouph 40 β=1.3 30 Blake Ridge P [MPa] 1.4 Gulf of Mexico 1.5 20 Cascadia 2 India 10 Hydrate Ridge 3 Mallik 4 Mt.Elbert 5 6 0 272.15 277.15 282.15 287.15 292.15 297.15 302.15 Temp [K]

  26. a:  ’ c =0.03 MPa b:  ’ c =0.5 MPa Hydrate-bearing Sediments c:  ’ c =1 MPa Sand Kaolinite 20 100% c c 6 b 100% b 15  dev [MPa] a  dev [MPa] a 4 10 50% c 2 b 50% c 5 a b c 0% c a 0% b b a a 0 0 0 5 10 0 5 10 Axial strain [%] Axial strain [%] all THCEM properties = non lineal functions of S hyd

  27. Summary: Methane Hydrates Relevance: C-reserves climate change instability Formation PT history dependent S hyd is CH 4 -limited (typically) Multi-phase Hydrate Water Gas Ice Mineral (not all at once) Pore habit Patchy (coarse grained sediments) Lenses (fine grained sediments) THCEM properties Non linear functions of S hyd Gas Production Endothermic (may be heat-limited) Very large volume expansion Production from sands? from clayey sediments?

  28. CO 2 geo-storage

  29. Geological Storage of CO 2 z=0.7~3.5 km z=1.7~4.5 km z=0.5~3.7 km z=0.3~1.1 km z=0.3~0.8 km Cap rock Coal seams Hydrate Stability Z Cap rock Cap rock Deep Saline Aquifer Cap rock Oil Reservoir Depleted Hydro- Carbon Reservoir

  30. CO 2 Properties 1000 1000 Supercritical CO 2 Supercritical CO 2 supercritical CO 2 100 100 Pressure [MPa] Pressure [MPa] CO 2 Liquid CO 2 Liquid CO 2 Solid CO 2 Solid 10 10 1 1 CO 2 CO 2 Cap rock Hydrate Hydrate CO 2 Gas CO 2 Gas 0.1 0.1 -100 -100 -60 -60 -20 -20 20 20 60 60 100 100 140 140 Temperature [°C] Temperature [°C]

  31. Water and Liquid CO 2 Properties Property [units] CO 2 liquid H 2 O liquid [kJ·kg -1 ·K -1 ] Heat capacity c p 2.3 4.2 Thermal cond.  [W·m -1 ·K -1 ] ~0.13 0.56 Thermal Diff.  [m 2 s -1 ] 6.1×10 -8 1.3×10 -7 Viscosity μ (2-to-8)×10 -5 ~1.5×10 -3 [Pa·s] Density ρ [kg·m -3 ] ~938-to-800 1003 Bulk Modulus [GPa] 0.1-to-0.3 2.1-to-2.3 V P [m/s] ~400-to-600 1450-to-1520 Electrical cond. [S/m] < 0.01 f(c) - seawater: ~5 Dielectric permit. [ ] ~ 1.5 ~79

  32. Diffusion of CO 2 in H 2 O Water diffusion into liquid CO 2 : D~10 -7 m 2 /s

  33. Solubility of CO 2 in Water - pH 1.4 1.4 in 1 mol NaCl solution T= 30  C 1.2 1.2 Solubility of CO 2 [mol/L] Dissolved CO 2 [mol/L] 60  C 1.0 1 90  C 120  C 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0 3.0 3.5 4.0 4.5 0 5 10 15 20 Fluid pressure [MPa] pH (1) change in surface charge  change in fabric (2) mineral dissolution

  34. pH and Minerals Surface charge [C/m 2 ] Stumm, 1992 0.2 0.1  change in fabric 0 2 4 6 8 10 12 pH Gidigasu, 1976 TiO 2 CaCO 3 Mg(OH) 2 Solubility [mmol/L] Fe(OH) 2 Ca(OH) 2 Fe(OH) 3 Ti(OH) 4 Al 2 O 3 Al 2 O 3 SiO 2  mineral dissolution pH

  35. Summary: CO 2 Geological Storage More sustainable use of fossil fuels PT: typically in supercritical regime  low viscosity  invasion pattern? Liquid CO 2  low B,  ’,  el  geophysical monitoring Acidifies water  surface charge (+)  clay fabric in shale cap rock?  mineral dissolution  stress field? permeability?

  36. interfaces

  37. Surface Tension BBC News In pictures Visions of Science.jpg

  38. CO 2 -H 2 O: Interfacial Interaction Low P High P (1) mutual diffusion of CO 2 -H 2 O (2) interfacial tension=f(P)

  39. Surface Tension and Contact Angle Water droplet in CO 2 gas CO 2 liquid

  40. Surface Tension = f(P) CO 2 L-V boundary 100 at 295 K at 298 K H 2 O-CO 2 Interfacial tension  [mN/m] Gaseous CO 2 Liquid CO 2 80 60 40 20 0 0 5 10 15 20 Pressure [MPa]

  41. Interfacial Tension water and … liq CO 2 oil CH 4 gas 30 34-46 64 [mN/m] 30 40 50 60 70 31  1 72 Ice water vapor hyd gas CH 4 CO 2 hyd CO 2 Increasing pressure Liquids Gasses Solids or density

  42.    q  VS LS cos  Contact Angle LV Non-wetting droplet Wetting droplet  LV  LV q  VS  LS  VS  LS q Mineral Mineral  LV ↓ → θ ↑  LV ↓ → θ ↓

  43.    q  VS LS cos  Contact Angle = f(P gas ) LV

  44. Other Effects - Surfactants Pulmonary self-regulation: 30 mN/m Surface tension Air Alveola size hydrophobic hydrophilic Surfactant  Surface tension = f(pore size)  S-u data interpretation

  45. Capillary Pressure - Laplace        q 2 P P R 2 R cos nw w  P P 2 2R   q nw w P cos R    1 M       q P R T ln R 2 cos     LV M  h  1    r R T ln    h   2 r   q P cos R 1     q     R 2 cos P T T     m m wi T T m m Characteristic curves  u-S for: water -gas water-oil gas-oil water-ice water-hydrate

Recommend


More recommend