empirical distribution along geodesics in exponential
play

Empirical distribution along geodesics in exponential last passage - PowerPoint PPT Presentation

Empirical distribution along geodesics in exponential last passage percolation Lingfu Zhang (Joint work with Allan Sly) Princeton University Department of Mathematics Jun 12, 2020 Lingfu Zhang Princeton LPP empirical distribution Jun 12,


  1. Empirical distribution along geodesics in exponential last passage percolation Lingfu Zhang (Joint work with Allan Sly) Princeton University Department of Mathematics Jun 12, 2020 Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  2. Exactly solvable LPP: model and main results Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  3. v u We study the directed last passage percolation (LPP) on Z 2 . ξ ( v ) ∼ Exp( 1 ) , i.i.d. ∀ v ∈ Z 2 � Passage time: X u , v := max γ w ∈ γ ξ ( w ) � Geodesic: Γ u , v := argmax γ w ∈ γ ξ ( w ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  4. v u We study the directed last passage percolation (LPP) on Z 2 . ξ ( v ) ∼ Exp( 1 ) , i.i.d. ∀ v ∈ Z 2 � Passage time: X u , v := max γ w ∈ γ ξ ( w ) � Geodesic: Γ u , v := argmax γ w ∈ γ ξ ( w ) Equivalent to TASEP , exactly solvable with 1 : 2 : 3 scaling. Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  5. Exactly solvable in the KPZ universality class. Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  6. Exactly solvable in the KPZ universality class. X ( 0 , 0 ) , ( n , n ) ∼ 4 n (Rost, 1981). Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  7. Exactly solvable in the KPZ universality class. X ( 0 , 0 ) , ( n , n ) ∼ 4 n (Rost, 1981). 2 − 4 / 3 n − 1 / 3 ( X ( 0 , 0 ) , ( n , n ) − 4 n ) converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000). Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  8. Exactly solvable in the KPZ universality class. X ( 0 , 0 ) , ( n , n ) ∼ 4 n (Rost, 1981). 2 − 4 / 3 n − 1 / 3 ( X ( 0 , 0 ) , ( n , n ) − 4 n ) converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000). Point to line profile: stationary Airy 2 process minus a parabola (Borodin and Ferrari, 2008) � � 2 − 4 / 3 n − 1 / 3 ⇒ A 2 ( x ) − x 2 X ( 0 , 0 ) , ( n − x ( 2 n ) 2 / 3 , n + x ( 2 n ) 2 / 3 ) − 4 n Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  9. Exactly solvable in the KPZ universality class. X ( 0 , 0 ) , ( n , n ) ∼ 4 n (Rost, 1981). 2 − 4 / 3 n − 1 / 3 ( X ( 0 , 0 ) , ( n , n ) − 4 n ) converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000). Point to line profile: stationary Airy 2 process minus a parabola (Borodin and Ferrari, 2008) � � 2 − 4 / 3 n − 1 / 3 ⇒ A 2 ( x ) − x 2 X ( 0 , 0 ) , ( n − x ( 2 n ) 2 / 3 , n + x ( 2 n ) 2 / 3 ) − 4 n A 2 is absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014). Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  10. Exactly solvable in the KPZ universality class. X ( 0 , 0 ) , ( n , n ) ∼ 4 n (Rost, 1981). 2 − 4 / 3 n − 1 / 3 ( X ( 0 , 0 ) , ( n , n ) − 4 n ) converges weakly to the GUE Tracy-Widom distribution (Johansson, 2000). Point to line profile: stationary Airy 2 process minus a parabola (Borodin and Ferrari, 2008) � � 2 − 4 / 3 n − 1 / 3 ⇒ A 2 ( x ) − x 2 X ( 0 , 0 ) , ( n − x ( 2 n ) 2 / 3 , n + x ( 2 n ) 2 / 3 ) − 4 n A 2 is absolute continuous with respect to Brownian motion (Corwin and Hammond, 2014). General initial data: KPZ fixed point (Matetski, Quastel, and Remenik, 2017). � � x �→ n − 1 / 3 sup y f ( y ) + X ( − y , y ) , ( n − x ( 2 n ) 2 / 3 , n + x ( 2 n ) 2 / 3 ) − 4 n Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  11. We study the local behavior along geodesics. Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  12. We study the local behavior along geodesics. ( n , n ) v ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  13. We study the local behavior along geodesics. ( n , n ) v v ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  14. We study the local behavior along geodesics. ( n , n ) v v ( 0 , 0 ) ξ s ( v ) := { ξ ( u ) } u ∈ Z 2 : � u − v � ∞ ≤ s ∈ R ( 2 s + 1 ) 2 , s ∈ Z ≥ 0 Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  15. We study the local behavior along geodesics. ( n , n ) v v ( 0 , 0 ) ξ s ( v ) := { ξ ( u ) } u ∈ Z 2 : � u − v � ∞ ≤ s ∈ R ( 2 s + 1 ) 2 , s ∈ Z ≥ 0 1 � Empirical measure µ n , s := v ∈ Γ ( 0 , 0 ) , ( n , n ) δ ξ s ( v ) 2 n Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  16. Main result ξ s ( v ) := { ξ ( u ) } u ∈ Z 2 : � u − v � ∞ ≤ s ∈ R ( 2 s + 1 ) 2 , s ∈ Z ≥ 0 1 Empirical measure µ n , s := � v ∈ Γ ( 0 , 0 ) , ( n , n ) δ ξ s ( v ) 2 n Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  17. Main result ξ s ( v ) := { ξ ( u ) } u ∈ Z 2 : � u − v � ∞ ≤ s ∈ R ( 2 s + 1 ) 2 , s ∈ Z ≥ 0 1 Empirical measure µ n , s := � v ∈ Γ ( 0 , 0 ) , ( n , n ) δ ξ s ( v ) 2 n Question: limiting behavior of µ n , s as n → ∞ ? (First asked for the first passage percolation (FPP) model (e.g. AimPL, 2015)) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  18. Main result ξ s ( v ) := { ξ ( u ) } u ∈ Z 2 : � u − v � ∞ ≤ s ∈ R ( 2 s + 1 ) 2 , s ∈ Z ≥ 0 1 Empirical measure µ n , s := � v ∈ Γ ( 0 , 0 ) , ( n , n ) δ ξ s ( v ) 2 n Question: limiting behavior of µ n , s as n → ∞ ? (First asked for the first passage percolation (FPP) model (e.g. AimPL, 2015)) Theorem (Sly and Z., 2020) For each s ∈ Z ≥ 0 , there exists a (deterministic) measure µ s on R ( 2 s + 1 ) 2 , such that µ n , s → µ s weakly in probability as n → ∞ . Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  19. Ingredients of the proof Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  20. General idea Weights along the geodesic are asymptotically i.i.d. Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  21. General idea Weights along the geodesic are asymptotically i.i.d. x + y = β n ( n , n ) v β x + y = α n v α ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  22. General idea Weights along the geodesic are asymptotically i.i.d. x + y = β n ( n , n ) v β x + y = α n v α ( 0 , 0 ) Find some Ψ n , s , s.t. ∀ α, β , as n → ∞ , the joint law of ξ s ( v α ) , ξ s ( v β ) is close to Ψ n , s × Ψ n , s . Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  23. General idea Weights along the geodesic are asymptotically i.i.d. x + y = β n ( n , n ) v β x + y = α n v α ( 0 , 0 ) Find some Ψ n , s , s.t. ∀ α, β , as n → ∞ , the joint law of ξ s ( v α ) , ξ s ( v β ) is close to Ψ n , s × Ψ n , s . Ψ n , s converges as n → ∞ . Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  24. Mostly depends on a strip x + y = β n ( n , n ) S β v β x + y = α n S α v α ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  25. Mostly depends on a strip x + y = β n ( n , n ) S β v β x + y = α n S α v α ( 0 , 0 ) Conditioned on ξ ( v ) for v �∈ S α , the law of ξ s ( v α ) is close to Ψ n , s , ∀ α . Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  26. Mostly depends on a strip x + y = β n ( n , n ) S β v β x + y = α n S α v α ( 0 , 0 ) Conditioned on ξ ( v ) for v �∈ S α , the law of ξ s ( v α ) is close to Ψ n , s , ∀ α . S α being disjoint from S β = ⇒ asymptotic independence. Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  27. A closer look at the strip ( n , n ) L + L − ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  28. A closer look at the strip ( n , n ) L + L − ( 0 , 0 ) Take L − , L + being δ n away from x + y = α n . Consider the passage times from ( 0 , 0 ) to L − and from ( n , n ) to L + : H − , H + . X ( 0 , 0 ) , ( n , n ) = max u ∈ L − , w ∈ L + X u , w + H − ( u ) + H + ( w ) . Geodesic between L − and L + : Γ H − , H + . Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  29. A closer look at the strip ( n , n ) L + L + L − H + / B + L − H − / B − ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  30. A closer look at the strip ( n , n ) L + L + L − H + / B + L − H − / B − ( 0 , 0 ) Conditioned on ξ ( v ) for v �∈ S α , H − , H + are locally Brownian. Around argmax H − + H + , (with rescaling) the law of H − , H + is close to B − , B + , where B − + B + is 3D-Bessel and B − − B + is Brownian motion. Using KPZ fixed point formulae. Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  31. A closer look at the strip ( n , n ) L + L + L − H + / B + L − H − / B − ( 0 , 0 ) Replace H − , H + by B − , B + . With high prob Γ B − , B + largely overlaps with Γ H − , H + . With high prob v α = Γ H − , H + ∩ { x + y = α n } = Γ B − , B + ∩ { x + y = α n } . Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  32. Convergence of Ψ n , s Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  33. Convergence of Ψ n , s Cover geodesics by length ∼ m geodesics, for large fixed m . ( n , n ) ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

  34. Convergence of Ψ n , s Cover geodesics by length ∼ m geodesics, for large fixed m . ( n , n ) ( 0 , 0 ) Lingfu Zhang Princeton LPP empirical distribution Jun 12, 2020

Recommend


More recommend